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ABSTRACT: One important consequence of the Axiom of Choice is the absorption law of cardinal arithmetic. It states that
for any cardinals m and n, if m 6 n and n is infinite, then m+ n = n and if m 6= 0, m · n = n. In this paper, we investigate
some conditions that make this property hold as well as an instance when such a property cannot be proved in the absence
of the Axiom of Choice. We further find some conditions that preserve orderings in cardinal arithmetic. These results also
lead to the conditions that make the cancellation law of cardinal arithmetic hold in set theory without choice.

INTRODUCTION

The Axiom of Choice (AC) plays many important
roles in cardinal numbers. Many important theorems
cannot be proved without it. We cannot prove that
every infinite set has a denumerable subset. We
also cannot calculate the sums or products of some
cardinals. Things are more awkward since any two
cardinal numbers may not be compared to each other.
However, its non-constructiveness causes some para-
doxical situations, for example, the existence of a non-
measurable subset of R and the Banach-Tarski para-
dox1. Some mathematicians do not accept this axiom,
so their works must be done without it. Therefore it
is interesting to know which theorems can and which
theorems cannot be proved without AC.

One important consequence of AC is the absorp-
tion law of cardinal arithmetic. It states that for any
cardinals m and n, if m 6 n and n is infinite, then
m+ n = n and if m 6= 0, m · n = n. This makes
it easy to compute the sum and product of any two
cardinals. Without AC, this property is no longer true.
In this paper, we will first investigate some conditions
that make this property hold as well as an instance
when such a property cannot be proved in the absence
of AC.

As mentioned earlier, without AC, some cardinals
are not comparable. As a result of the lack of
the absorption law of cardinal arithmetic, we some-
times cannot calculate cardinal sums or products.
Thus it is not easy to decide whether the inequality
m+ p < n+ q is true or false when cardinals m, n,
p, and q are given and sometimes we are not able
to know the answer. In set theory with AC, by the
absorption law together with the fact that any two
cardinals are comparable, we can answer the question

immediately. Thus without AC, it is interesting to
know what conditions would allow us to preserve
orderings in cardinal arithmetic. These results also
lead to the conditions that make the cancellation law of
cardinal arithmetic hold in set theory without choice.

We first give some background in set theory
followed by our main results.

PRELIMINARIES

All basic concepts in set theory used in this pa-
per are defined in the usual way. We use
a, b, c, . . . , A,B,C, . . . for sets. We write 〈A,B〉 for
the ordered pair of A and B and f � A for the
restriction of a function f to A. We write A ≈ B
and say A and B have the same cardinality if they are
equinumerous, i.e., there is a one-to-one function from
A onto B and A � B if there is a one-to-one function
from A into B. ZF denotes the Zermelo-Fraenkel set
theory and ZFC denotes ZF with the Axiom of Choice.

We write |A| for the cardinality of A. An equiva-
lent of AC is the Well-ordering Theorem which states
that every set can be well-ordered. Thus in ZFC, every
set is equinumerous to some ordinal. We let such least
ordinal be the cardinality of that set. In the absence of
AC, we cannot guarantee that a set is equinumerous
to some ordinal. Thus the actual definition of the
cardinality of a set is quite complicated and will be
omitted since we will not use it directly. All we need
to know is that it is defined so that the following
property holds: |A| = |B| ↔ A ≈ B for any sets
A and B.

m is a cardinal number or simply a cardinal if
m = |M | for some set M . For any cardinals m and
n where m = |M | and n = |N |, we say m is less
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than or equal to n, written m 6 n, if M � N and
write m < n if m 6 n and m 6= n. Cardinal arithmetic
can be defined as follows. For any cardinals m and n
where m = |M | and n = |N |, m+n = |M∪N |where
M ∩N = ∅, m ·n = |M×N |, and mn = |NM |where
NM = {f | f : N →M}.

Addition and multiplication of cardinals are com-
mutative and associative. Distributive property of
multiplication over addition also holds.

The following theorems2 are basic properties of
cardinals needed for later work.

Theorem 1 (Schröder-Bernstein Theorem) If m 6
n and n 6 m, then m = n for all cardinals m and n.

Theorem 2 If m and n are cardinals such that m 6 n,
then there exists a cardinal p such that m+ p = n.

Theorem 3 If m, n, and p are cardinals such that
m < n, then

m+ p 6 n+ p,

m · p 6 n · p,
pm 6 pn where p > 0.

Each natural number is constructed so that it is
the set of all smaller natural numbers, namely, 0 = ∅,
1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2}, . . . and so on. The
basic properties of natural numbers will be omitted
and will be used in the ordinary way. Full details can
be found in any elementary Set Theory textbooks.

Let ω denote the set of all natural numbers.
A set is finite if it is equinumerous to some natural

number. Otherwise it is infinite. It is a basic property
that every finite set is equinumerous to a unique
natural number. We let such natural number be the
cardinality of that set. A cardinal is finite if it is the
cardinality of a finite set. Otherwise it is infinite. Note
that every natural number is a finite cardinal and vice
versa.

The cardinality of an infinite well-ordered set is
called an aleph. Thus an aleph is the cardinality of
some ordinal. ℵ0 is |ω|. It is easy to see that two
alephs can be compared and every non-empty class of
alephs has a least element.

A cardinal m is countable if m 6 ℵ0.
It is a consequence of AC that ω � M for all

infinite set M 3. We call such an infinite set Dedekind
infinite. Otherwise it is Dedekind finite. Note that a
Dedekind finite set could be infinite. A cardinal m
is called Dedekind infinite if ℵ0 6 m or equivalently
M has a bijection to some of its proper subsets1.
Otherwise m is Dedekind finite. Thus a Dedekind

finite cardinal cannot be compared with ℵ0 unless it
is finite.

Throughout this paper, we use letters from the
German alphabet m, n, p, q, . . . for cardinal numbers,
letters from the Greek alphabet α, β, γ, . . . for ordinal
numbers, k, l,m, n, . . . for natural numbers, and a
letter from the Hebrew alphabet ℵ for an aleph, unless
otherwise stated.

THE MAIN THEOREMS

Throughout this section we shall work in ZF.

Absorption law of cardinal arithmetic

As mentioned earlier, the absorption law of cardinal
arithmetic is a consequence of AC. Without AC, what
conditions would allow us to obtain that property. It is
obvious that the property holds for natural numbers
and alephs since they are cardinals of well-ordered
sets and in ZFC (in which the property holds) every
set can be well-ordered, so every cardinal is either
a natural number or an aleph. What about cardinals
apart from those? It has been shown in ZF that if
m 6 c 6 n, then m+ n = n for all cardinals m and
n where c = |R|4. We generalize the theorem as
follows.

Theorem 4 If m 6 q 6 n where q = 2q, then
m+ n = n for all cardinals q, m, and n.

Proof : Let q, m, and n be cardinals such that q = 2q
and m 6 q 6 n. By Theorem 2, there exists a cardinal
p such that n = q+ p. Then m+ n 6 q+ n =
q+ (q+ p) = 2q + p = q+ p = n 6 m+ n. Thus
m+ n = n. �

Since 2ℵ = ℵ for all alephs ℵ, by the above
theorem, we have the following corollaries.

Corollary 1 If m is an aleph and m 6 n, then
m+ n = n.

Corollary 2 If m is countable and n is Dedekind
infinite, then m+ n = n.

The theorem below shows that the above result
cannot be obtained for an arbitrary infinite n.

Theorem 5 If m+ n = n for all natural numbers m
and all infinite cardinals n, then every infinite cardinal
is Dedekind infinite.

Proof : Let n be an infinite cardinal, say n = |N |
where 0 /∈ N . By the assumption, 1 + n = n. Thus
1 ∪ N = {0} ∪ N ≈ N where N is a proper subset
of 1 ∪ N . Thus 1 ∪ N is Dedekind infinite, and so is
n. �
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Since it cannot be proved, without AC, that every
infinite cardinal is Dedekind infinite3, Theorem 5 tells
us that it cannot be proved from ZF that m+ n = n for
all natural numbers m and all infinite cardinals n.

Order preserving in cardinal arithmetic

In general, 6 in Theorem 3 cannot be replaced by <.
For example, 1 < 2 but 1 + ℵ0 = ℵ0 = 2 + ℵ0 2 (this
also follows immediately from Corollary 2). Similarly
for multiplication and exponentiation.

With AC, by the absorption law of cardinal arith-
metic, we have that for cardinals m and n such that
m < n, m+ p < n+ p if and only if p is finite or
p < n. Without AC, things are more complicated
since we may not be able to compute the sum of some
cardinals.

Now we consider the conditions, in the absence
of AC, that make m+ p < n+ p when m < n. This
is trivial if all m, n, and p are finite. By Corollary 2,
this also holds if m and n are Dedekind infinite and p
is countable. What more can be proved without AC?
The following are our results where we can assert that
m+ p < n+ p when m < n despite not being able to
compute the sums m+ p and n+ p. First, we need the
following lemma.

Lemma 1 If p and q are Dedekind finite cardinals,
then so are p+ q and p · q.

Proof : Let p = |P | and q = |Q| where P and Q are
disjoint.

Suppose p+ q is Dedekind infinite. Then there
is an injection f : ω → P ∪ Q. Without loss of
generality, we can assume that ran(f) ∩ P is infinite.
Thus f−1[ran(f) ∩ P ] is an infinite subset of ω, so
ω ≈ ran(f) ∩ P � P . Hence P is Dedekind infinite.

Now, suppose p · q is Dedekind infinite. Then
there is an injection g : ω → P ×Q.
Case 1. ran(g) ∩ ({p} ×Q) is finite for all p ∈ P .

Since g is an injection with an infinite do-
main, the set D := dom(ran(g)) is an infinite
subset of P . Hence the set N := {n ∈ ω |
n is the least element ing−1[{p} × Q] for somep ∈
D} is an infinite subset of ω. Thus ω ≈ N ≈ D � P ,
so P is Dedekind infinite.
Case 2. ran(g)∩({p}×Q) is infinite for some p ∈ P .

Then g−1[ran(g)∩({p}×Q)] is an infinite subset
of ω, so ω ≈ ran(g)∩ ({p}×Q). Define h : ran(g)∩
({p} × Q) → Q by h(〈p, q〉) = q. Then h is one-to-
one, so ω � Q, i.e., Q is Dedekind infinite. �

Theorem 6 For all cardinals n and Dedekind finite

cardinals m and p, if m < n, then

m+ p < n+ p and

m · p < n · p whenever p 6= 0.

Proof : Let n be a cardinal and m and p be Dedekind
finite cardinals such that m < n, say m = |M |, n =
|N |, and p = |P |. We may assume M ⊂ N and
P ∩N = ∅. Clearly, m+ p 6 n+ p.

By Lemma 1, m+ p is Dedekind finite. If
n is Dedekind infinite, then so is n+ p and thus
m+ p 6= n+ p. Suppose n is Dedekind finite. By
Lemma 1, n+ p is Dedekind finite. Since M ∪ P ⊂
N ∪ P which is Dedekind finite, M ∪ P 6≈ N ∪ P .
Thus m+ p 6= n+ p.

Similarly for multiplication. �
The proofs of Theorems 7 and 8 in the following

are modified from the work of Halbeisen and Shelah5.

Theorem 7 For all Dedekind finite cardinals p, if
m < n where each of m and n is either a natural
number or an aleph, then

m+ p < n+ p and

m · p < n · p whenever p 6= 0.

Proof : Let m and n be natural numbers or alephs such
that m < n. Let α and β be the least ordinals such
that |α| = m and |β| = n. Let p be a Dedekind finite
cardinal, say p = |P | where P is disjoint from α and
β. It is trivial if p = 0. Assume p 6= 0. Clearly,
m+ p 6 n+ p. Suppose there exists a bijection f :
β∪P → α∪P . Since P is Dedekind finite, we will get
a contradiction from this assumption by constructing
a 1-1-ω-sequence of P .

Let p0 ∈ P . For any 0 6= k ∈ ω, assume there
exists a 1-1-k-sequence 〈p0, p1, . . . , pk−1〉k of P . Let
Uk = {pi | i < k}. DefineC := (Uk×β)∪{〈pi, pj〉 |
i < j < k} ∪ {〈x, y〉 | x < y < β}. It is easy
to see that C well-orders β ∪ Uk. If m is finite, then
m + k < n + k. Assume m is infinite. Then m and n
are alephs and so they are Dedekind infinite. Thus by
Corollary 2, |α ∪ Uk| = m + k = m < n = n + k =
|β ∪ Uk|. Then there exists x ∈ β ∪ Uk such that
f(x) /∈ α ∪ Uk. Let x be such C-least element and
pk = f(x). Then pk ∈ P − Uk. Hence we have a 1-
1-(k+ 1)-sequence of P . By recursion on ω, we have
a 1-1-ω-sequence of P , so ω � P , i.e., P is Dedekind
infinite.

For multiplication, it is clear that m · p 6 n · p.
Suppose there exists a bijection f : β × P → α × P .
As in the proof of addition, we have a 1-1-k-sequence
〈p0, p1, . . . , pk−1〉k of P and Uk = {pi | i < k}
where 0 6= k ∈ ω. Define a relation C on β × Uk by
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〈δ, pi〉C 〈ρ, pj〉 ⇔ (i < j) ∨ (i = j ∧ δ < ρ).
It is easy to see that C well-orders β × Uk. As in
the proof of addition, we can show that |α × Uk| <
|β × Uk|. Then there exists 〈δ, pi〉 ∈ β × Uk such
that f(〈δ, pi〉) /∈ α × Uk. Let 〈δ, pi〉 be such C-least
element. Then f(〈δ, pi〉) ∈ (α× P )− (α× Uk). Let
pk be the second component of f(〈δ, pi〉). We can see
that pk is distinct from every element of Uk. Hence
we have a 1-1-(k + 1)-sequence of P . By recursion
on ω, we have a 1-1-ω-sequence of P , so ω � P . �

From the previous example, we can see that 1 +
ℵ0 = 2 + ℵ0 whereas 1 6= 2. This means that
the cancellation law for addition of cardinals fails in
general and in particular when the cancelled part is
infinite. It has been shown that the law cannot be
obtained without AC even the cancelled cardinal is
Dedekind finite3. It follows immediately from the
above theorem that this can be done if each of m and
n is either a natural number or an aleph.

Corollary 3 For all Dedekind finite cardinals p, if
each of m and n is either a natural number or an aleph
such that
(i) m+ p = n+ p, then m = n.
(ii) m · p = n · p where p > 0, then m = n.

The rest of this section shows our results about
cardinal exponentiation.

Theorem 8 For all Dedekind finite cardinals p > 1,
if m < n where m and n are natural numbers, then
pm < pn.

Proof : Let p > 1 be a Dedekind finite cardinal, say
p = |P |, and letm and n be natural numbers such that
m < n. Clearly, pm 6 pn.

Suppose there is a bijection F : nP → mP . As
in the proof of Theorem 7, we will show that ω � P
by constructing a 1-1-ω-sequence of P . Let p0 and
p1 be distinct elements in P . For any 1 < k ∈ ω,
assume there is a 1-1-k-sequence 〈p0, p1, . . . , pk−1〉k
of P and let Uk = {pi | i < k}. Define a relation C
on nUk by

f C g ⇔ ∃l < n(f � l = g � l ∧ f(l) = pi ∧
g(l) = pj where i < j < k).

It is easy to see that C well-orders nUk. Since 1 <
k ∈ ω, km < kn. Then there exists f ∈ nUk such
that F (f) /∈ mUk. We may assume f is such C-
least element. Since F (f) ∈ mP , there exists a least
natural number l < m such that F (f)(l) ∈ P − Uk.
Let pk = F (f)(l). Hence we have a 1-1-(k + 1)-
sequence of P . By recursion on ω, we have a 1-1-ω-
sequence of P and so ω � P . �

Thus we have the following result.

Corollary 4 For all Dedekind finite cardinals p > 1,
if pm = pn where m and n are natural numbers, then
m = n.
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