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ABSTRACT: We study the alternative Jensen’s functional equation f(x) ± 2f(xy) + f(xy2) = 0 when f is a function
from a semigroup or a group to a uniquely divisible abelian group.
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INTRODUCTION

The alternative Cauchy functional equation

‖f(x+ y)‖ = ‖f(x) + f(y)‖

has been studied by a number of authors (e.g.,
Kuczma1, 2). Forti3 solved a more general problem
of the form

{cf(x+ y)− af(x)− bf(y)− d}
× {f(x+ y)− f(x)− f(y)} = 0 (1)

by extending the work of Ger4 as well as that of
Forti and Paganoni5 as mentioned in the paper by
Paganoni and Rätz6. Inspired by the work on alterna-
tive Cauchy functional equations, we will generalize
Jensen’s functional equation

f

(
x+ y

2

)
=
f(x) + f(y)

2

to an alternative version∥∥∥∥f (x+ y

2

)∥∥∥∥ =

∥∥∥∥f(x) + f(y)

2

∥∥∥∥ .
In order to study functions f : S → G∗, where (S, ·)
is a semigroup and (G∗,+) is a group, it would be
appropriate to state Jensen’s functional equation as

f(x)− 2f(xy) + f(xy2) = 0, (2)

and propose the alternative Jensen’s functional equa-
tion

f(x)± 2f(xy) + f(xy2) = 0. (3)

Jensen’s functional equation f(xy) + f(xy−1) =
2f(x) on groups has been studied by several authors

(e.g., Ng7 and Parnami8), but the alternative version
(3) has not yet been investigated.

In this paper, we will develop a theorem con-
cerning (3) on semigroups and will give illustrating
examples on some specific semigroups. In addition,
we will extend the result to functions defined on
groups and will eventually show that in the case of
functions f from a 2-divisible group to a uniquely
divisible abelian group, the alternative Jensen’s func-
tional equation (3) is equivalent to Jensen’s functional
equation (2).

AUXILIARY LEMMAS

In this and the next section, we shall let (S, ·) be
a semigroup and let (G∗,+) be a uniquely divisible
abelian group. We denote the set of all positive
integers by N and the set of all integers by Z.

Throughout this section, there will be many sub-
stitutions in the alternative Jensen’s functional equa-
tion (3), and it will be convenient to introduce the
following notation. For a function f : S → G∗,
denote the functionals J+

f , J
−
f : S2 → G∗ by

J+
f (x, y) = f(x) + 2f(xy) + f(xy2)

and J−
f (x, y) = f(x)− 2f(xy) + f(xy2).

It is worth noting that Jensen’s functional equation (2)
is equivalent to J−

f (x, y) = 0. We shall denote the
statement

Pf (x, y) =
((
J+
f (x, y) = 0

)
or

(
J−
f (x, y) = 0

))
.

The set of all solutions of (3) will be denoted by

A(S) = {f : S → G∗ | Pf (x, y) for allx, y ∈ S}.
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We will now prove four lemmas constituting the
theorem in the next section when the alternatives in
Pf (x, y) and Pf (xy, y) are decided.

Lemma 1 Let f ∈ A(S). For x, y ∈ S, if
J−
f (x, y) = 0 and J−

f (xy, y) = 0, then J−
f (xy2, y) =

0.

Proof : Suppose there exist a, b ∈ S such that
J−
f (a, b) = 0 and J−

f (ab, b) = 0, but J−
f (ab2, b) 6= 0;

that is, J+
f (ab2, b) = 0. Thus

J−
f (a, b) + 2J−

f (ab, b)− J+
f (ab2, b) = 0,

which simplifies to

f(a)− 4f(ab2)− f(ab4) = 0. (4)

Let k = f(ab2) and consider the two cases on
Pf (a, b

2).
(i) If J+

f (a, b2) = 0, that is, f(a) + 2f(ab2) +

f(ab4) = 0, then solving it with (4) gives f(a) =
k and f(ab4) = −3k. From J−

f (a, b) = 0

and J+
f (ab2, b) = 0, we can calculate f(ab) =

f(ab3) = k.
From Pf (ab

3, b), we must have f(ab5) ∈
{5k,−7k}. Taking into account Pf (ab, b

2), we
will get k = 0. Hence f(ab3) = 0.

(ii) If J−
f (a, b2) = 0, that is, f(a) − 2f(ab2) +

f(ab4) = 0, then solving it with (4) gives
f(ab4) = −k. From J+

f (ab2, b) = 0, we
calculate f(ab3) = 0.

From both cases above, we conclude that f(ab3) = 0,
which implies J−

f (ab2, b) = 0, a contradiction. �

Corollary 1 Let f ∈ A(S). For x, y ∈ S, if
J−
f (x, y) = 0 and J−

f (xy, y) = 0, then J−
f (xyn, y) =

0 and f(xyn) = f(x) + n(f(xy) − f(x)) for all
n ∈ N.

Proof : Repeatedly apply Lemma 1 to get
J−
f (xyn, y) = 0, which can be rearranged as

f(xyn+2)− f(xyn+1) = f(xyn+1)− f(xyn).

The desired result will follow. �

Lemma 2 Let f ∈ A(S). For x, y ∈ S, if J+
f (x, y) =

0 and J+
f (xy, y) = 0, then J+

f (xy2, y) = 0.

Proof : Suppose there exist a, b ∈ S such that
J+
f (a, b) = 0 and J+

f (ab, b) = 0, but J+
f (ab2, b) 6= 0;

that is, J−
f (ab2, b) = 0. Therefore,

J+
f (a, b)− 2J+

f (ab, b)− J−
f (ab2, b) = 0,

which simplifies to

f(a)− 4f(ab2)− f(ab4) = 0. (5)

Let k = f(ab2) and consider the two cases on
Pf (a, b

2).
(i) If J+

f (a, b2) = 0, that is, f(a) + 2f(ab2) +

f(ab4) = 0, then solving it with (5) gives f(a) =
k and f(ab4) = −3k. From J+

f (a, b) = 0

and J−
f (ab2, b) = 0, we can calculate f(ab) =

f(ab3) = −k.
From Pf (ab

3, b), we compute f(ab5) ∈
{−5k, 7k}. From Pf (ab, b

2), we conclude that
k = 0. Hence f(ab3) = 0.

(ii) If J−
f (a, b2) = 0, that is, f(a) − 2f(ab2) +

f(ab4) = 0, then solving it with(5) gives f(a) =
3k and f(ab4) = −k. From J−

f (ab2, b) = 0, we
calculate f(ab3) = 0.

From both cases above, we conclude that f(ab3) = 0,
which implies J+

f (ab2, b) = 0, a contradiction. �

Corollary 2 Let f ∈ A(S). For x, y ∈ S, if
J+
f (x, y) = 0 and J+

f (xy, y) = 0, then J+
f (xyn, y) =

0 and f(xyn) = (−1)n (f(x)− n(f(x) + f(xy)) for
all n ∈ N.

Proof : Repeatedly apply Lemma 2 to get
J+
f (xyn, y) = 0, which can be rearranged as

f(xyn+2)+f(xyn+1) = (−1)
(
f(xyn+1) + f(xyn)

)
.

The desired result will follow. �

Lemma 3 Let f ∈ A(S). For x, y ∈ S, if
J−
f (x, y) 6= 0 and J+

f (xy, y) 6= 0, then f(xyn) =
−f(x)/3 for all n ∈ N.

Proof : Suppose that J−
f (x, y) 6= 0 and J+

f (xy, y) 6=
0; that is, J+

f (x, y) = 0 and J−
f (xy, y) = 0. Let k =

f(xy2) and consider the two cases on Pf (xy
2, y).

(i) If J+
f (xy2, y) = 0, then consider

J+
f (x, y)− 2J−

f (xy, y) + J+
f (xy2, y) = 0,

which simplifies to

f(x) + 6f(xy2) + f(xy4) = 0.

Comparing the above equation with Pf (x, y
2),

we infer that f(xy2) = 0 which yields
J+
f (xy, y) = 0, a contradiction.

(ii) If J−
f (xy2, y) = 0, then consider

J+
f (x, y)− 2J−

f (xy, y)− J−
f (xy2, y) = 0,
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which simplifies to

f(x) + 4f(xy2)− f(xy4) = 0. (6)

Consider further cases on Pf (x, y
2).

(a) If J+
f (x, y2) = 0, that is, f(x) + 2f(xy2) +

f(xy4) = 0, then solving it with (6) gives
f(x) = −3k and f(xy4) = k. From
J+
f (x, y) = 0 and J−

f (xy2, y) = 0, we
calculate f(xy) = f(xy3) = k. Hence we
have J−

f (xy, y) = 0 and J−
f (xy2, y) = 0.

Now Corollary 1 gives J−
f (xyn, y) = 0 for

all n ∈ N, which permits us to calculate
f(xyn) = k = −f(x)/3 for all n ∈ N.

(b) If J−
f (x, y2) = 0, that is, f(x) − 2f(xy2) +

f(xy4) = 0, then solving it with (6) gives
f(x) = −k. From J+

f (x, y) = 0, we will
have f(xy) = 0, which leads to J−

f (x, y) =
0, a contradiction.

�

Lemma 4 Let f ∈ A(S). For x, y ∈ S, if
J+
f (x, y) 6= 0 and J−

f (xy, y) 6= 0, then f(xyn) =

(−1)n+1f(x)/3 for all n ∈ N.

Proof : Suppose that J+
f (x, y) 6= 0 and J−

f (xy, y) 6=
0; that is, J−

f (x, y) = 0 and J+
f (xy, y) = 0. Let k =

f(xy2) and consider the two cases on Pf (xy
2, y).

(i) If J+
f (xy2, y) = 0, then consider

J−
f (x, y) + 2J+

f (xy, y)− J+
f (xy2, y) = 0,

which simplifies to

f(x) + 4f(xy2)− f(xy4) = 0. (7)

Consider further cases on Pf (x, y
2).

(a) If J+
f (x, y2) = 0, that is, f(x) + 2f(xy2) +

f(xy4) = 0, then solving it with (7) gives
f(x) = −3k and f(xy4) = k. From
J−
f (x, y) = 0 and J+

f (xy2, y) = 0, we
calculate f(xy) = f(xy3) = −k. Hence we
have J+

f (xy, y) = 0 and J+
f (xy2, y) = 0.

Now Corollary 2 gives J+
f (xyn, y) = 0 for

all n ∈ N, which permits us to calculate
f(xyn) = (−1)nk = (−1)n+1f(x)/3 for all
n ∈ N.

(b) If J−
f (x, y2) = 0, that is, f(x) − 2f(xy2) +

f(xy4) = 0, then solving it with (7) gives
f(x) = −k. From J−

f (x, y) = 0, we will
have f(xy) = 0, which leads to J+

f (x, y) =
0, a contradiction.

(ii) If J−
f (xy2, y) = 0, then consider

J−
f (x, y) + 2J+

f (xy, y) + J−
f (xy2, y) = 0,

which simplifies to

f(x) + 6f(xy2) + f(xy4) = 0.

Comparing the above equation with Pf (x, y
2),

we infer that f(xy2) = 0 which gives
J−
f (xy, y) = 0, a contradiction.

�

MAIN THEOREM AND SOME EXAMPLES

We are now ready to establish a theorem that pieces
together all the lemmas in the previous section. The
theorem will serve as a foundation for solving the
alternative Jensen’s functional equation (3) in the
examples provided thereafter. Please be reminded that
we still consider functions f : S → G∗, where (S, ·)
is a semigroup and (G∗,+) is a uniquely divisible
abelian group.

Theorem 1 f ∈ A(S) if and only if, for all x, y ∈ S,
one of the following properties holds:
(i) f(xyn) = f(x)+n(f(xy)− f(x)) for all n ∈ N.
(ii) f(xyn) = (−1)n(f(x) − n(f(x) + f(xy))) for

all n ∈ N.
(iii) f(xyn) = −f(x)/3 for all n ∈ N.
(iv) f(xyn) = (−1)n+1f(x)/3 for all n ∈ N.

Proof : The sufficiency of the theorem can be directly
verified. Thus we will only prove the necessity.

For any x, y ∈ S. There are four possibilities con-
cerning Pf (x, y) and Pf (xy, y) for us to consider.
(i) If J−

f (x, y) = 0 and J−
f (xy, y) = 0, then

Corollary 1 gives the first property in the theorem.
(ii) If J+

f (x, y) = 0 and J+
f (xy, y) = 0, then Corol-

lary 2 gives the second property in the theorem.
We remark that this case is not exclusive from the
first case when f(xy) = f(xy2) = 0.

(iii) If J−
f (x, y) 6= 0 and J+

f (xy, y) 6= 0, then
Lemma 3 gives the third property in the theorem.

(iv) If J+
f (x, y) 6= 0 and J−

f (xy, y) 6= 0, then
Lemma 4 gives the forth property in the theorem.

�
We shall demonstrate how one may use Theo-

rem 1 to solve (3) on some specific semigroups. The
two following theorems give the results on infinite and
finite cyclic semigroups.

Theorem 2 Let S = 〈a〉 be an infinite cyclic semi-
group. Then f ∈ A(S) if and only if
(i) f(an) = k0 + k1n for all n ∈ N, or
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(ii) f(an) = (−1)n(k0 + k1n) for all n ∈ N, or
(iii) f(an) = (1− 4δn0)k0 for all n ∈ N, or
(iv) f(an) = (−1)n(1− 4δn0)k0 for all n ∈ N,
where k0 and k1 are constants in G∗, and δij is the
Kronecker delta.

Proof : The theorem directly follows from Theorem 1
with x = y = a. �

Theorem 3 Let S = 〈a | am = am+p〉 be a finite
cyclic semigroup with the index m and the period p.
Then f ∈ A(S) if and only if
(i) f(an) = k for all n ∈ N, or
(ii) f(an) = (−1)nk for all n ∈ N and 2 | p, or
(iii) f(an) = (1− 4δn0)k for all n ∈ N if m > 1, or
(iv) f(an) = (−1)n(1 − 4δn0)k for all n ∈ N if

m > 1 and 2 | p.
where k is a constant in G∗, and δij is the Kronecker
delta.

Proof : We will identify each possibility in Theorem 3
and apply the conditions of the finite cyclic semi-
group.
(i) f(an) = k0 + k1n for all n ∈ N. Since am =

am+p, we will have k0+k1m = k0+k1(m+ p).
Thus k1 = 0 and hence f(an) is a constant in G∗.

(ii) f(an) = (−1)n(k0+k1n) for all n ∈ N. If 2 | p,
then am = am+p gives k0 + k1n = k0 + k1(m+
p), which yields k1 = 0. Thus f(an) = (−1)nk
for all n ∈ N, where k is a constant in G∗.

If 2 | p+1, then an = an+p yields k0+k1n =
− (k0 + k1(n+ p)) for all n > m. Therefore,
k0 = k1 = 0. Therefore, f(an) = 0 for all n ∈
N, which has already been taken care of in the first
case.

(iii) f(an) = (1 − 4δn0)k0 for all n ∈ N. If m = 1,
then a = a1+p gives −3k0 = k0. Hence k0 = 0
and this solution has already been taken care of in
either of the first two cases.

(iv) f(an) = (−1)n(1 − 4δn0)k0 for all n ∈ N.
If m = 1, then a = a1+p implies −3k0 =
(−1)1+pk0, which gives k0 = 0. If m > 1 and
2 | p + 1, then am = am+p implies k0 = −k0,
which again gives k0 = 0. The solution with
k0 = 0 has already been taken care of in either
of the first two cases.

�
The next theorem gives the result on a semigroup

with 2 idempotent generators.

Theorem 4 Let H =
〈
a, b | a2 = a, b2 = b

〉
. Then

f ∈ A(H) if and only if
(i) f(ax) = f(a) and f(bx) = f(b) for all x ∈ H ,

or

(ii) f(ax) = −f(a)/3 and f(bx) = f(b) for all x ∈
H , or

(iii) f(ax) = f(a) and f(bx) = −f(b)/3 for all x ∈
H , or

(iv) f(ax) = −f(a)/3 and f(bx) = −f(b)/3 for all
x ∈ H .

Proof : The sufficiency of the theorem is straightfor-
ward. Hence we will only show the necessity. Let
f ∈ A(H). For any x ∈ H . Considering Pf (x, a)
and using a2 = a, we will have

f(xa) ∈ {f(x),−1

3
f(x)}. (8)

Similarly, considering Pf (x, b) and using b2 = b will
give

f(xb) ∈ {f(x),−1

3
f(x)}. (9)

For an integer l > 1 and x1, x2, . . . , xl ∈ {a, b}, we
can apply (8) and (9) in a certain order to get

f(x1x2 · · ·xl) =
(
−1

3

)k

f(x1) (10)

for some integer k with 0 6 k < l.
Next we will show that

∀x ∈ H [f(ax) = f(a)]

or ∀x ∈ H [f(ax) = −1

3
f(a)]. (11)

Let α = f(a). If α = 0, then (10) with x1 = a gives
f(ay) = 0, which already satisfies (11). Hence we
will assume that α 6= 0.

Let c = ab. For all n ∈ N, using (10) with x1 =
a, we obtain

f(cn) =

(
−1

3

)k

α, (12)

for some integer k with 0 6 k < 2n In particular,
when n = 1,

f(c) ∈ {α,−1

3
α}. (13)

Using Theorem 1 with x = a and y = c, and
observing that acn = cn for all n ∈ N. we have 4
possible cases to consider.
(i) f(cn) = f(a) + n(f(c) − f(a)) for all n ∈ N.

If f(c) = −α/3, then f(c2) = −5α/3, which is
impossible when compared to (12) with n = 2.
Therefore, f(c) = α and consequently f(cn) =
α = f(c) for all n ∈ N.
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(ii) f(cn) = (−1)n (f(a)− n(f(c) + f(a))) for all
n ∈ N. If f(c) = α, then f(c2) = −3α, which
is impossible when compared to (12) with n = 2.
If f(c) = −α/3, then f(c4) = −5α/3. which is
impossible when compared to (12) with n = 4.

(iii) f(cn) = −f(a)/3 = −α/3 for all n ∈ N. That
is f(cn) = f(c) for all n ∈ N.

(iv) f(cn) = (−1)n+1f(a)/3 = (−1)n+1α/3 for all
n ∈ N. Hence f(c) = α/3, which is impossible
when compared to (13).

From all cases considered above, we conclude that

f(cn) = f(c) for alln ∈ N. (14)

For each n ∈ N, we will evaluate f(cna) in two
different ways. First, applying (8) with x = cn and
noting from (14) that f(cn) = f(c), we will get

f(cna) ∈ {f(c),−f(c)/3}. (15)

On the other hand, if we apply (9) with x = cna,
we will have f(cnab) ∈ {f(cna),− 1

3f(c
na)}. But

cnab = cn+1 and, from (14), f(cn+1) = f(c).
Therefore,

f(cna) ∈ {f(c),−3f(c)}. (16)

Comparing (15) and (16), we conclude that

f(cna) = f(c) for alln ∈ N. (17)

For each x ∈ H , ax = cn or ax = cna for some
n ∈ N. Hence from (13), (14) and (17), we have
established (11).

A similar result applies to f(bx) where x ∈ H .
Hence all possible forms of f in the theorem have been
obtained and the proof is now complete. �

FURTHER RESULTS ON GROUPS

In this section, we will investigate the possibilities
when the semigroup S possesses additional properties.
The next lemma gives a variant of Theorem 1 when
the semigroup (S, ·) is replaced by a group (G, ·). As
with previous sections, we let (G∗,+) be a uniquely
divisible abelian group.

Lemma 5 If (G, ·) is a group, then f ∈ A(G) if and
only if f has one of the following properties.
(i) f(xyn) = f(x) + n(f(xy)− f(x)) for all x, y ∈

G, n ∈ N.
(ii) f(xyn) = (−1)n(f(x) − n(f(x) + f(xy))) for

all x, y ∈ G, n ∈ N.

Proof : Let x, y ∈ G and let f(x) = −3k. Suppose
that one of the last two properties in Theorem 1

holds. If f(xyn) = −f(x)/3 = k for all n ∈
N. Considering Pf (xy

−1, y), we get f(xy−1) ∈
{5k,−7k}. Now Pf (xy

−1, y2) implies k = 0. If
f(xyn) = (−1)n+1f(x)/3 = (−1)nk for all n ∈
N. Considering Pf (xy

−1, y), we get f(xy−1) ∈
{−5k, 7k}. Now Pf (xy

−1, y2) implies k = 0. We
now conclude that k = 0. Therefore, f(x) = 0
and f(xyn) = 0 for all n ∈ N, which has already
been taken care of in either of the first two properties
in Theorem 1. Therefore, the last two properties in
Theorem 1 are unnecessary for functions defined on
the group (G, ·). �

The next theorem will extend Lemma 5 to account
for f(xyn) when n is a negative integer.

Theorem 5 If (G, ·) is a group, then f ∈ A(G) if and
only if f has one of the following properties.
(i) f(xyn) = f(x) + n(f(xy)− f(x)) for all x, y ∈

G, n ∈ Z.
(ii) f(xyn) = (−1)n (f(x)− n(f(x) + f(xy))) for

all x, y ∈ G, n ∈ Z.

Proof : The sufficiency of the theorem is obvious. To
prove the necessity, we let f ∈ A(G) and let x, y ∈ G.
From Lemma 5, there are two possibilities.
(i) Consider the first possibility when

f(xyn) = f(x) + n(f(xy)− f(x)) (18)

for all n ∈ N. Then setting n = 2 and n = 3, we
get

f(xy2) = 2f(xy)− f(x), (19)

f(xy3) = 3f(xy)− 2f(x). (20)

Replacing x and y in Lemma 5 with xy3 and y−1,
respectively, we have two more possibilities to
explore.
(a) If f(xy3−n) = f(xy3)+n(f(xy2)−f(xy3))

for all n ∈ N, then substituting f(xy2)
and f(xy3) from (19) and (20), we get
f(xy3−n) = f(x) + (3− n)(f(xy)− f(x))
for all n ∈ N. Hence (18) holds for all n ∈ Z

(b) If f(xy3−n) = (−1)n(f(xy3)−n(f(xy3)+
f(xy2))) for all n ∈ N. then setting n = 2
and n = 3, we get

f(xy) = −2f(xy2)− f(xy3). (21)

f(x) = 3f(xy2) + 2f(xy3), (22)

From (19), (20), (21) and (22), we have
f(xy3) = f(xy2) = f(xy) = f(x) = 0.
Hence f(xyn) = 0 for all n ∈ Z, and so (18)
holds for all n ∈ Z.
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(ii) We turn to the second possibility when

f(xyn) = (−1)n (f(x)− n(f(x) + f(xy)))
(23)

for all n ∈ N. Then setting n = 2 and n = 3, we
get

f(xy2) = −2f(xy)− f(x), (24)

f(xy3) = 3f(xy) + 2f(x). (25)

Replacing x and y in Lemma 5 with xy3 and y−1,
respectively, we have two more possibilities to
explore.
(a) If f(xy3−n) = f(xy3)+n(f(xy2)−f(xy3))

for all n ∈ N. Then setting n = 2 and n = 3
gives

f(xy) = 2f(xy2)− f(xy3). (26)

f(x) = 3f(xy2)− 2f(xy3), (27)

From (24), (25), (26) and (27), we have
f(xy3) = f(xy2) = f(xy) = f(x) = 0.
Hence f(xyn) = 0 for all n ∈ Z and (23)
holds for all n ∈ Z.

(b) If f(xy3−n) = (−1)n(f(xy3)−n(f(xy3)+
f(xy2))), then substituting f(xy2) and
f(xy3) from (24) and (25), we get
f(xy3−n) = (−1)n(f(x) − (3 − n)(f(x) +
f(xy))) for all n ∈ N. Hence (23) holds for
all n ∈ Z

�
We will now take a step further by assuming

that the group (G, ·) is 2-divisible; that is, for all
x ∈ G, there exist y ∈ G such that x = y2.
The next theorem will establish the equivalence of
the alternative Jensen’s functional equation (3) and
Jensen’s functional equation (2) for functions defined
on a 2-divisible group.

Theorem 6 If (G, ·) is a 2-divisible group, then f ∈
A(G) if and only if f satisfies (2) for all x, y ∈ G.

Proof : The sufficiency of the theorem is obvious. To
prove the necessity, we let x, y ∈ G. Since G is 2-
divisible, there exists an element z ∈ G such that y =
z2. Using Theorem 5 with y replaced by z, we will
prove that f(x) − 2f(xz2) + f(xz4) by considering
two cases.
(i) If f(xzn) = f(x)+n(f(xz)−f(x)) for all n ∈ N.

With n = 2 and n = 4, we have f(xz2) =
2f(xz) − f(x) and f(xz4) = 4f(xz) − 3f(x),
respectively. Eliminating f(xz) gives f(x) −
2f(xz2) + f(xz4) = 0.

(ii) If f(xzn) = (−1)n (f(z)− n(f(xz) + f(z)))
for all n ∈ N. With n = 2 and n = 4, we
have f(xz2) = −2f(xz) − f(x) and f(xz4) =
−4f(xz) − 3f(x), respectively. Eliminating
f(xz) gives f(x)− 2f(xz2) + f(xz4) = 0.

Recalling that y = z2, we conclude from both cases
above that f(x) − 2f(xy) + f(xy2) = 0. Hence f
satisfies (2) for all x, y ∈ G. �
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