
R ESEARCH  ARTICLE

doi: 10.2306/scienceasia1513-1874.2012.38.201

ScienceAsia 38 (2012): 201–206

Relative non nil-n graphs of finite groups
Ahmad Erfanian∗, Behnaz Tolue

Department of Mathematics and Centre of Excellence in Analysis on Algebraic Structures,
Ferdowsi University of Mashhad, Mashhad, Iran

∗Corresponding author, e-mail: erfanian@math.um.ac.ir
Received 19 Jan 2012
Accepted 23 Apr 2012

ABSTRACT: Suppose G is not a nilpotent group of class at most n (a non nil-n group). Consider a subgroup H of G. In
this paper, we introduce the relative non nil-n graph Γ(n)

H,G of a finite group G. It is a graph with vertex set G \C(n)
G(H)

and two distinct vertices x and y are adjacent if at least one of them belongs to H and [x, y] /∈ Zn−1(G), where the subgroup
C(n)

G(H) contains g ∈ G such that [g, h] ∈ Zn−1(G) for all h ∈ H . We present some general information about the
graph. Moreover, we define the probability which shows how close a group is to being a nil-n group. It is proved that two
n-isoclinic groups which are not nil-n groups have isomorphic graphs under special conditions.

KEYWORDS: nilpotent groups, nth nilpotency degree

INTRODUCTION

Graphs provide some tools for studying algebraic
structures. There are some ways to make a graph
associated with a group or semigroup. We may refer
to the works of Bertram et al1, Grunewald et al2,
Moghadamfar et al3 and Williams4 or recent papers
on non-commuting graphs, Engel graphs and non-
cyclic graphs given in Ref. 5, Ref. 6 and Ref. 7,
respectively.

In the next section, we introduce the relative non
nil-n graph. We discuss the diameter, dominating set,
and domination number of this graph. Defining such
a graph is the key to establishing the new probability,
namely, the nth nilpotency degree, which shows how
much a group is near to becoming a nil-n group.
Moreover, we prove that there is no relative non nil-
n star graph, non nil-n complete graph or relative
non nil-n complete bipartite graph. We discuss the
non-regularity of the relative non nil-n graph in some
special cases too. Furthermore, it is proved that two
n-isoclinic groups which are not nil-n groups have
isomorphic graphs under special conditions.

THE RELATIVE NON NIL-n GRAPH

Initially we define the relative non nil-n graph for any
group G which is not a nil-n group. Some graph
theoretical properties such as diameter, dominating
set, and domination number will be presented. We
also discuss the planarity of this graph.

Definition 1 We associate a graph Γ(n)
G with the

group G which is not a nil-n group. The vertex set
of this graph is G \ Zn(G) and two distinct vertices x

and y are adjacent if [x, y] /∈ Zn−1(G), where Zn(G)
is the nth term of the upper central series of G.

It is clear that when n = 1 then Γ(n)
G is the non-

commuting graph of ΓG. Therefore in the rest of the
paper suppose n > 1. Obviously, if Zn(G) = {1}
then Γ(n)

G = ΓG. By similar methods to those
used to prove Propositions 2 and 3 in Ref. 3 one can
conclude that there is no non nil-n group G with a
normal subgroup N 6= 1 such that Γ(n)

G
∼= Γ(n)

G/N .
Moreover, there is no non nil-n group G with H < G
such that Γ(n)

G
∼= Γ(n)

H .
Now, we generalize the non nil-n graph to the

relative non nil-n graph for any subgroup H of G.

Definition 2 The relative non nil-n graph, Γ(n)
H,G, is

associated with the non nil-n group G and H 6 G.
The vertex set is G \ C(n)

G(H), where

C(n)
G(H) = {x ∈ G : [x, y] ∈ Zn−1(G),∀y ∈ H}.

Moreover, two vertices x and y are adjacent if at least
one of them belongs to H and [x, y] /∈ Zn−1(G). If
H = G then we write Γ(n)

G,G = Γ(n)
G.

Obviously, the above graphs are simple. If G is a
nil-n group then both graphs are null and for abelian
subgroup H of G the relative non nil-n graph is an
empty graph. In this paper we always assume G is a
group which is not nil-n, unless stated. We define

C(n)
H(y) = {x ∈ H : [x, y] ∈ Zn−1(G)}

for H 6 G, which is a generalization of the or-
dinary centralizer of an element y in a group. For
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every subgroup H of G one can verify the equality
C(n)

G(H) = ∩x∈HC(n)
G(x). The degree of each

vertex can be easily computed. If the vertex h ∈ H
then deg(h) = |G| − |C(n)

G(h)| and for vertex g ∈
G \H we have deg(g) = |H| − |C(n)

H(g)|. Isolated
vertices do not exist, and if two vertices in H are in
the same conjugacy classes of G then they have the
same vertex degrees. Moreover, for every vertex x of
Γ(n)

G we have [G : C(n)
G(x)] > 2 which implies that

the graph is Hamiltonian.

Theorem 1 If H is a subgroup of G such that
Zn(H) = 1, then diam(Γ(n)

H,G) = 2 and the girth of
the graph is 3.

Proof : Let g1 and g2 be two vertices which are
not adjacent. There are vertices h1, h2 ∈ H by
hypothesis which join g1 and g2, respectively. If we
have [g2, h1] /∈ Zn−1(G) or [g1, h2] /∈ Zn−1(G)
then d(g1, g2) = 2. Suppose this does not occur.
Hence, h1h2 is a vertex and a neighbour of g1 and g2.
By similar an argument, if g and h are adjacent then
there is a triangle of the form {g, h, h1} or {g, h, h2}
or {g, h, h1h2}, where h, h1, h2 ∈ H and [g, h1] /∈
Zn−1(G), [h, h2] /∈ Zn−1(G). �
Note that Zn(H) = 1 is a necessary condition which
makes us sure that h1, h2 ∈ H are vertices. As a
consequence of the above theorem we can say that the
graph Γ(n)

H,G is connected whenever Zn(H) = 1.
Moreover, by the same argument as in Theorem 1 one
can deduce for any non nil-n groupG, diam(Γ(n)

G) =
2 and girth(Γ(n)

G) = 3 which is a generalization of
Proposition 2.1 in Ref. 5.

Now let us deal with the dominating set of the
graph. The following results are generalizations of
Remark 2.5, Proposition 2.12 part (1), Remark 2.13
and Proposition 2.14 in Ref. 5 so we omit the proof.

If {h} is a dominating set for Γ(n)
H,G, then

C(n)
G(H) = 1, h2 = 1 and C(n)

G(h) = 〈h〉, where
h ∈ H . Moreover, if S ⊆ V (Γ(n)

H,G) ∩H then S is
a dominating set of the graph Γ(n)

H,G if and only if

C(n)
G(S) ⊆ C(n)

G(H) ∪ S.

It is not hard to verify that if H = 〈Y 〉 then Y is a
dominating set for Γ(n)

H,G. Now, if H is a finite sim-
ple non-abelian subgroup of G then the domination
number of Γ(n)

H,G is less than 3. For every maximal
independent set S for Γ(n)

G, S ∪ Zn(G) is a maximal
nil-n subgroup of G.

The following two results will give some ways of
obtaining a dominating set for ΓH,G.

Theorem 2 Let G be a non nil-n group, H a sub-
group of G, and X = {h1, . . . , hk} a generating set

for H . If X ∩ C(n)
G(H) = {hm+1, . . . , hk} then

S = {h1, . . . , hm} ∪ {h1hm+1, h1hm+2 · · · , h1hk}

is a dominating set for Γ(n)
H,G.

Proof : Let t be a vertex which does not belong
to S. Consider two cases. If t ∈ H then there
exists an element h = hβ1

1 h
β2

2 · · ·hβm
m , βi ∈ Z with

[t, h] /∈ Zn−1(G). Hence, [t, hj ] /∈ Zn−1(G) for
some hj ∈ S, 1 6 j 6 m and it implies that t
joins hj as required. If t ∈ G \ H then there is an
element h = hγ11 h

γ2
2 · · ·h

γk
k ∈ H , γi ∈ Z such that

[t, h] /∈ Zn−1(G). Now if [t, hj ] /∈ Zn−1(G) for
some 1 6 j 6 m then t meets hj where hj ∈ S.
Otherwise if [t, hj ] ∈ Zn−1(G) for all 1 6 j 6 m
and as t /∈ C(n)

G(H) there will exist hs for some
m+ 1 6 s 6 k such that [t, hs] /∈ Zn−1(G). Hence t
is adjacent to h1hs and the proof is completed. �

Proposition 1 Assume H is a subgroup of G which is
not nil-n. Then S = HC(n)

G(H) − C(n)
G(H) is a

dominating set for Γ(n)
H,G.

Proof : Let x /∈ S be a vertex, so [x, h] /∈ Zn−1(G)
for some h ∈ H . If h /∈ C(n)

G(H) then h should be
in S and so x joins h. If h ∈ C(n)

G(H), then there
is t ∈ H\C(n)

G(H), since H is not a nil-n group.
If [x, t] /∈ Zn−1(G) then t and x are adjacent where
t ∈ S. Otherwise [x, t] ∈ Zn−1(G) and implies that
th /∈ C(n)

G(H), th ∈ S, and x meets th. �
If S is a dominating set for Γ(n)

H then it is a
dominating set for Γ(n)

H,G whenever C(n)
G(H) =

C(n)
G(S). It is not hard to conclude that Γ(n)

H is a
subgraph of Γ(n)

H,G while Γ(n)
H,G itself is subgraph

of Γ(n)
G which is a subgraph of the non-commuting

graph ΓG. Abdollahi et al5 proved that ΓG is planar
if and only if G ∼= S3 or D8 or Q8. Clearly, if
G ∼= D8 or Q8 then Γ(n)

G is a null graph for n > 1.
Moreover, the above argument implies that Γ(n)

S3
is

planar for n > 1.

Theorem 3 Suppose n > 1 and G is not a nil-n
group. Then Γ(n)

G is planar if and only if G ∼= S3.

Proof : Suppose Γ(n)
G is planar. The clique number

of the graph ω(Γ(n)
G) is less than 5. Therefore the

number of vertices that satisfy [x, y] /∈ Zn−1(G) is
at most 4. Now, the main result of Ref. 8 implies
G/Z(G) is finite. We can also define the epimorphism
G/Z(G) � G/Zn(G) which implies G/Zn(G) is
finite. The assertion follows by similar methods to the
proof of Proposition 2.3 in Ref. 5. �
We are interested in the properties which can be
inherited via isomorphic non nil-n graphs. For in-
stance, if G is a finite group which is not nil-n and
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Γ(n)
G
∼= Γ(n)

H for some groupH then one can deduce
H is a finite group which is not nil-n. Moreover,
if Γ(n)

G
∼= Γ(n)

H then |Zn(G)| divides gcd(|H| −
|Zn(H)|, |H|−|C(n)

H(x)|, |C(n)
H(x)|−|Zn(H)|) for

a vertex x ∈ V (Γ(n)
H).

Theorem 4 Let P be a finite simple group which is
not a nil-n group. If Γ(n)

G
∼= Γ(n)

P for some group
G, then |P | = |G|.

Proof : The proof follows from the classification of
finite simple groups and the fact that C(n)

P (x) =
CP (x) for all types of simple groups (see Theorem 1
in Ref. 9 for more details). �

RELATIVE nth NILPOTENCY DEGREE AND
Γ(n)

H,G

For any positive integer n, we introduce the proba-
bility that the commutator of two arbitrary elements
h ∈ H and g ∈ G belongs to Zn−1(G). Let us define
the probability and give some lower and upper bounds
for it.

Definition 3 The relative nth nilpotency degree of the
subgroup H in the group G, which is denoted by
P (n)

nil(H,G), is the ratio

P (n)
nil(H,G)

=
|{(h, g) ∈ H ×G : [h, g] ∈ Zn−1(G)}|

|H||G|
,

or equivalently

P (n)
nil(H,G) =

1

|H||G|
∑
g∈G
|C(n)

H(g)|

=
1

|H||G|
∑
h∈H

|C(n)
G(h)|.

It is clear that if n = 1 then P (1)
nil(H,G) =

d(H,G) which is the relative commutativity degree of
a subgroup H in the group G (see Ref. 10) and when
H = G then P (1)

nil(G) = d(G) is the commutativity
degree of the group G (see Refs. 11, 12). Moreover,
P (n)

nil(G) = 1 if and only if G is a nil-n group and
also P (n)

nil(G) 6 P (n+1)
nil(G).

If H 6 Zn(G) then P (n)
nil(H,G) = 1 and the

definition implies P (n)
nil(H,G) 6 P (n)

nil(H). The
following theorem is an improvement of Theorem 3.5
in Ref. 10.

Theorem 5 Let H be a subgroup of G and p be a
smallest prime which divides the order of G. Then

(i)

|Zn(G)|
|G|

+
p(|G| − |Zn(G)|)

|G|2
6 P (n)

nil(G)

6
|Zn(G)|+ |G|

2|G|

(ii)

|H ∩ Zn(G)|
|H|

+
p(|H| − |Zn(G) ∩H|)

|G||H|

6 P (n)
nil(H,G) 6

|Zn(G) ∩H|+ |H|
2|H|

.

Proof :
(i) Definition 3 implies

|G|2P (n)
nil(G) =

∑
x∈G
|C(n)

G(x)|

=
∑

x∈Zn(G)

|C(n)
G(x)|+

∑
x/∈Zn(G)

|C(n)
G(x)|

= |G||Zn(G)|+
∑

x∈G\Zn(G)

|C(n)
G(x)|.

Clearly we have p 6 |C(n)
G(x)| 6 |G|/2 for a

non-central element x. Therefore, we can easily
conclude that

p(|G| − |Zn(G)|) 6
∑

x∈G\Zn(G)

|C(n)
G(x)|

6
(|G| − |Zn(G)|)|G|

2

and the assertion follows just by substitution.
(ii) Again, we use Definition 3:

|G||H|P (n)
nil(H,G) =

∑
x∈H
|C(n)

G(x)|

=
∑

x∈H∩Zn(G)

|C(n)
G(x)|+

∑
x∈H\H∩Zn(G)

|C(n)
G(x)|

= |G||H ∩ Zn(G)|+
∑

x∈H\H∩Zn(G)

|C(n)
G(x)|.

The result follows in a similar way to the proof of
the first part.

�
If H * Zn(G) then P (n)

nil(H,G) 6 3
4 for non nil-n

group G, by the above theorem.

Theorem 6 Let H be a subgroup of G and N a
normal subgroup of G which is contained in H . We
have

P (n)
nil(H,G) 6 P (n)

nil

(
H

N
,
G

N

)
P (n)

nil(N),
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and the equality holds if N ∩ [H, nG] = 1 where
[H, nG] is the commutator subgroup of H and n
copies of G.

Proof : First we show that for every x ∈ G,
C(n)

H(x)N/N 6 C(n)
H/N (xN) and the equal-

ity holds if N ∩ [H, nG] = 1 since if h ∈
C(n)

H(x) then [hN, xN ] ∈ Zn−1(G)N/N 6
Zn−1(G/N). Moreover, if hN ∈ C(n)

H/N (xN)
then [hN, xN ] ∈ Zn−1(G/N). This means
[hN, xN, g1N, . . . , gn−1N ] = N for all giN ∈
G/N . Thus [h, x, g1, . . . , gn−1] ∈ N ∩ [H, nG] = 1.
The rest of the proof is very similar to the proof of
Theorem 3.9 in Ref. 10. �
We state the following formula which is the number
of edges of the non nil-n graph.

|E(Γ(n)
G)| = |G|

2

2
(1− P (n)

nil(G)). (1)

Moreover, any lower or upper bounds for P (n)
nil(G)

will give lower or upper bounds for |E(Γ(n)
G)| and

vice versa. It is clear that for every graph, the number
of edges is at most t(t − 1)/2, where t is the number
of vertices. Thus by using (1) we can obtain

P (n)
nil(G) >

2|Zn(G)|
|G|

+
1

|G|
− |Zn(G)|2

|G|2

− |Zn(G)|
|G|2

.

Furthermore, if G1 and G2 are groups with
|Zn(G1)| = |Zn(G2)| such that Γ(n)

G1
∼= Γ(n)

G2 ,
then P (n)

nil(G1) = P (n)
nil(G2).

Now, we recall that a star graph is a tree on n
vertices in which one vertex has degree n− 1 and the
others have degree 1.

Theorem 7 There is no group G and subgroup H
with a relative non nil-n star graph.

Proof : Suppose on the contrary that Γ(n)
H,G is rel-

ative non nil-n star graph. Assume h ∈ H is the
unique vertex of degree (|V (Γ(n)

H,G)| − 1). Then we
conclude that C(n)

G(H) = 1. On the other hand, for
a vertex g ∈ G \H we have |C(n)

H(g)| = |H| − 1 so
[H : C(n)

H(g)] = |H|/(|H|−1) which is impossible.
Secondly, assume g ∈ G \ H is the unique vertex of
degree (|V (Γ(n)

H,G)| − 1) and all the other vertices.
For instance h ∈ H has degree 1. Then we have
|G| = |C(n)

G(h)| + 1. Therefore, |C(n)
G(H)| = 1

and similarly, [G : C(n)
G(h)] = |G|/(|G| − 1) which

is impossible. Hence such a graph does not exist. �
Non nil-n star graphs do not exist and so there is no
group with nth nilpotency degree P (n)

nil(G) = 1 −
2/|G|+ 4/|G|2 whenever Zn(G) = 1.

Theorem 8 There is no relative non nil-n complete
graph Γ(n)

H,G.

Proof : Suppose Γ(n)
H,G is a relative non nil-n com-

plete graph. So for a vertex x ∈ H , we have
|G| − |C(n)

G(x)| = |G| − |C(n)
G(H)| − 1. Therefore

|C(n)
G(H)| = 1, |C(n)

G(x)| = 2, and the order of
all non-trivial elements of H is 2. This implies H is
an elementary abelian 2-group which is a contradic-
tion. �
It can be proved there is no non nil-n complete graph
in a similar way to the proof of the above theorem.
A complete bipartite graph is a bipartite graph such
that every pair of graph vertices in the two sets are
adjacent.

Theorem 9 There is no non nil-n complete bipartite
graph.

Proof : Suppose Γ(n)
G is a non nil-n complete bipar-

tite graph. All vertices are partitioned into two disjoint
sets V1 and V2 such that |V1|+ |V2| = |G| − |Zn(G)|.
We have

deg(x) = |G| − |C(n)
G(x)| 6 (|G| − |Zn(G)|)

2

and |Zn(G)|q = |C(n)
G(x)| for some q ∈ Z and

x ∈ V (Γ(n)
G). Hence |G| 6 |Zn(G)|(2q − 1) and

so [G : C(n)
G(x)] 6 (2 − (1/q)) < 2 which is a

contradiction. �
We claim that there is no relative non nil-n complete
bipartite graph. Otherwise, the only possibility is to
have two disjoint sets V1 and V2 such that one contains
vertices ofH . Since all vertices ofH are not adjacent,
if h ∈ V1 then [h, x] ∈ Zn−1(G) for all x ∈ H \
C(n)

G(H) which implies that h ∈ C(n)
G(H) which is

a contradiction.

Proposition 2 Let H be a subgroup of the non nil-n
group G. Then the following hold:
(i) Γ(n)

H,G has no vertex of degree 2.
(ii) There is no vertex in H of degree 4 and if

g ∈ G \ H is a vertex of degree 4 then H ∼=
S3 or D8 or Q8.

(iii) Γ(n)
H,G has no vertex of degree p in H , also if

g ∈ G \H is a vertex of degree p then H ∼= D2p

or |H| = p+ 1, where p is an odd prime.

Proof :
(i) Obvious.
(ii) Assume h ∈ H is a vertex of degree 4.

deg(h) = |C(n)
G(h)|([G : C(n)

G(h)]− 1) = 4.

It implies |C(n)
G(h)| = 2 or 4 and G ∼=

S3 or D8 or Q8. But they have no non-abelian

www.scienceasia.org

http://www.scienceasia.org/2012.html
www.scienceasia.org


ScienceAsia 38 (2012) 205

subgroup and this means that Γ(n)
H,G has isolated

vertices in G \H and no vertices in H which is a
contradiction. If g ∈ G \H is a vertex of degree
4, then the same argument about its degree implies
the assertion.

(iii) Suppose h ∈ H is a vertex and

deg(h) = |C(n)
G(h)|([G : C(n)

G(h)]− 1) = p.

Therefore |G| = 2p and since G is non-abelian
and p is an odd number G ∼= D2p and again
D2p has no non-abelian subgroup which is a
contradiction. Similarly, one can conclude that
|C(n)

H(g)| = p or |C(n)
H(g)| = 1 for g ∈ G \H

of degree p. Hence H ∼= D2p or |H| = p+ 1.
�

Obviously, by Proposition 2, Γ(n)
H,G is not p-regular

or 4-regular. We finish this section with some interest-
ing results about the non-regularity of the relative nil-
n graph. Note that H is a non-trivial proper subgroup
of G.

Theorem 10 There is no relative non nil-n graph
which is m-regular, where m is a square-free positive
odd integer.

Proof : Suppose Γ(n)
H,G is a relative non nil-n graph

which is m-regular and P = {p1 , p2 , . . . , pk
} is the

set of distinct odd primes which factorize m. If h ∈
H ∩ V (Γ(n)

H,G) then

m = deg(h) = |C(n)
G(h)|([G : C(n)

G(h)]− 1),

|C(n)
G(h)| =

∏
pi∈S

pi, and ([G : C(n)
G(h)] −

1) =
∏

pj∈Sc
pj , where S and Sc are subsets of

P ∗ = P ∪ {1} such that |C(n)
G(h)| 6= 1. Thus

|G| =
∏

pi∈S
pi(
∏
pj∈Sc pj + 1). By a similar to

above, |H| =
∏

pi∈T
pi(
∏
pj∈T c pj + 1), where T

and T c are subsets of P ∗. Since H is a subgroup
of G we have

∏
pi∈T\T∩S

pi(
∏
pj∈T c pj + 1) divides

(
∏
pj∈Sc pj + 1) which is impossible. �

Theorem 11 The relative non nil-n graph Γ(n)
H,G is

not 2k-regular, where k is a square free positive odd
integer.

Proof : By similar method to the proof of the previous
theorem, we obtain several cases for the orders of H
and G for which none of them is valid. �
If Γ(n)

H,G is a graph associated with a groupG of odd
order which is not a nil-n group then the degrees of its
vertices are even numbers. By Theorem 11 it is not a
2k-regular graph, for square free positive odd integer
k. It is not a 2r-regular graph because otherwise we

have 2r = |C(n)
G(h)|([G : C(n)

G(h)] − 1) for h ∈
H ∩V (Γ(n)

H,G). Since |C(n)
G(h)| 6= 1 it follows that

|C(n)
G(h)| = 2α, 1 6 α 6 r and it is a contradiction.

We guess Γ(n)
H,G is not regular at all when G is of

odd order.

Γ(n)
H,G AND RELATIVE n-ISOCLINIC

GROUPS

In this section, we are going to consider the known
conjecture posed by Thompson13 which states that if
two graphs associated with the groups G and H are
isomorphic then the groups G and H are isomorphic
as well. Although we may easily check that the
conjecture is not always true but we may find some
conditions in which the above conjecture is valid.

Theorem 12 Let H be a non nil-n subgroup of group
G such that |C(n)

G(H)| 6 m, where m > 3. If
Γ(n)

H,G
∼= Γ(n)

Sm
then |G| = |Sm|.

Proof : Isomorphism between graphs implies that
|G| − |C(n)

G(H)| = m!− 1 or equivalently

|G|
|C(n)

G(H)|
=

m!− 1

|C(n)
G(H)|

+ 1.

Since m! − 1 and k are coprime for 1 6 k 6 m
so |C(n)

G(H)| > m or equal to 1. Hence, the only
possibility is |C(n)

G(H)| = 1 and so the assertion
follows. �

Let us recall the definition of n-isoclinism (see
Ref. 14 for more details).

Definition 4 Let H and G be groups. Then the pair
(α, β) is called n-isoclinism from H to G whenever
(i) α is an isomorphism from H/Zn(H) to

G/Zn(G), where Zn(H) and Zn(G) are the
n-th term of the upper central series of H and G,
respectively.

(ii) β is an isomorphism from γn+1(H) to γn+1(G),
with the law

[h1, . . . , hn, hn+1] 7→ [g1, . . . , gn, gn+1]

in which gj ∈ α(hjZn(H)) for every 1 6 j 6
n + 1. If there is such a pair (α, β) with the
above properties then we say that H and G are
n-isoclinic and denoted by H n∼ G.

Theorem 13 Let G1
n∼ G2 be n-isoclinic groups. If

|Zn(G1)| = |Zn(G2)| then Γ(n)
G1
∼= Γ(n)

G2
.

Proof : By hypothesis we have the bijection θ between
Zn(G1) and Zn(G2). Moreover,

α :
G1

Zn(G1)
→ G2

Zn(G2)
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is an isomorphism which maps giZn(G1) to
g′iZn(G1) for 1 6 i 6 k, where {g1, . . . , gk}
and {g′1, . . . , g′k} are the sets of transversals of
G1/Zn(G1) and G2/Zn(G2), respectively. Now, we
introduce ψ : G1\Zn(G1) → G2\Zn(G2) such that
giz 7→ g′iθ(z) where, z ∈ Zn(G1). Therefore ψ is
our favourite bijection between the set of vertices of
Γ(n)

G1
and Γ(n)

G2
since if x meets y then [x, y] /∈

Zn−1(G1). The isomorphism β : γn+1(G1) →
γn+1(G2) implies that ψ(x) and ψ(y) are adjacent
and the result follows. �
One can improve the above result for relative n-
isoclinism (see Ref. 15) and associated relative graphs
by a similar method to the proof of Theorem 13.
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