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ABSTRACT: The restriction analysis of 16S-23S rRNA gene internal transcribed spacer regions (ITS) using TaqI, AluI,
HpaII, and AvaII revealed that forty-seven bacterial isolates found in fruits and flowers collected in Thailand belong to the
genus Acetobacter. They were identified as follows: Group 1 containing 11 isolates was identified as A. pasteurianus,
Group 2 containing nine isolates was identified as A. orientalis, Group 3 containing eight isolates was identified as
A. lovaniensis, Group 4 including eight isolates was identified as A. indonesiensis, Group 5 containing three isolates
was identified as A. tropicalis, Group 6 containing five isolates was identified as A. ghanensis, and Group 7 containing
four isolates was identified as A. orleanensis. The differentiation of Acetobacter species by the 16S-23S rRNA gene
ITS restriction analysis was discussed. The phenotypic, chemotaxonomic, and molecular characteristics including 16S
rRNA gene sequences supported the above-mentioned identification. All Thai isolates were screened for their alcohol
dehydrogenase activity and exhibited an activity of 2.05–7.52 units/mg protein at 30 °C. Isolate PHD-23 produced the
highest quantity of 1.50% acetic acid (v/v) from 4.0% ethanol (v/v).

KEYWORDS: acetic acid bacteria, acetic acid production, alcohol dehydrogenase, 16S-23S rRNA gene ITS restric-
tion analysis

INTRODUCTION

The genus Acetobacter contains 19 species compris-
ing A. aceti, A. indonesiensis, A. cerevisiae, A. cib-
inongensis, A. pasteurianus, A. lovaniensis, A. or-
leanensis, A. estunensis, A. malorum, A. orientalis,
A. peroxydans, A. pomorum, A. syzygii, A. tropicalis,
A. oeni, A. ghanensis, A. nitrogenifigens, A. senegalen-
sis, and A. fabarum1–5. Acetobacter strains exhibit
the capability of producing acetic acid from ethanol,
oxidize acetate and lactate to CO2 and water, and
contain the major ubiquinone with nine isoprene units
(Q-9)3, 6. They are well known as vinegar producers
from ethanol by two sequential catalytic reactions of

membrane-bound alcohol dehydrogenase (ADH) and
aldehyde dehydrogenase7.

Thailand is located in the tropical area and there
are diverse fruits and flowers from which acetic acid
bacteria were isolated8, 9. In Europe, Acetobacter
strains, the most popular strains for making acetic
acid in vinegar factories, are mesophilic, with opti-
mum temperature for growth at about 30 °C10. The
industrial vinegar production is strictly controlled at
30 °C. In many countries, the fermentation rate and
fermentation efficiency decrease when the tempera-
ture increases by 2–3 °C. Therefore, it would be
desirable to find strains of acetic acid bacteria (AAB)
that can work optimally at temperatures above 30 °C.
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This study identifies Acetobacter isolates isolated
in Thailand by 16S-23S rRNA gene internal tran-
scribed spacer region (ITS) restriction analysis. It
includes phenotypic and chemotaxonomic character-
izations and 16S rRNA gene sequence analysis, along
with screening for acetic acid production by isolates
using ADH activity.

MATERIALS AND METHODS

Isolation of acetic acid producing bacteria

The forty-seven isolates were isolated from fruits
and flowers collected in Thailand by an enrichment
culture approach using glucose/ethanol/yeast extract
(GEY) medium8. A sample source was incubated
at pH 4.5 and 30 °C for 3–5 days in a liquid
medium. When microbial growth was found, the
culture was streaked onto a GEY-agar plate containing
0.3% CaCO3 (w/v)11. AAB were selected as acid-
producing bacterial strains that form a clear zone
around colonies growing on the agar plate.

Identification methods

Phenotypic and chemotaxonomic characteriza-
tions: Phenotypic characterizations were carried out
by incubating test strains at 30 °C and pH 6.8 for
two days on glucose/yeast extract/peptone/glycerol
(GYPG) agar8. For Gram staining of bacterial cells,
the Hucker-Conn modified method12 was used. Physi-
ological and biochemical characterizations were made
by the methods of Asai et al13 and Gosselé et al14.
The selected isolates were grown in GYPG media
on a rotary shaker (150–200 rpm) at 30 °C for 24 h.
Ubiquinone was extracted and purified, as reported by
Yamada et al6. The purified ubiquinone preparation
was distinguished from its homologues by reversed-
phase paper chromatography6 and by high perfor-
mance liquid chromatography15. DNA was extracted
by the method described by Saito and Miura16. DNA
base composition was determined by the method of
Tamaoka and Komagata17.

16S rRNA gene sequencing and phylogenetic anal-
yses: The extracted DNA of an isolate was amplified
for 16S rRNA genes with two primers, 20F (5′-GAG-
TTTGATCCTGGCTCAG-3′; positions 9–27 by the
Escherichia coli numbering system, accession number
V00348)18 and 1500R (5′-GTTACCTTGTTACGA-
CTT-3′; positions 1509–1492). The amplified 16S
rRNA genes were sequenced with an ABI PRISM
BigDye Terminator V3.18. For the sequencing of
16S rRNA genes, the following six primers were
used: 20F, 1500R, 520F (5′-CAGCAGCCGCGGTA-
ATAC-3′; positions 519–536), 520R (5′-GTATTAC-

CGCGGCTGCTG-3′; positions 536–519), 920F (5′-
AAACTCAAATGAATTGACGG-3′; positions 907–
926), and 920R (5′-CCGTCAATTCATTTGAGTTT-
3′; positions 926–907). Multiple sequence align-
ments were performed with the program CLUSTAL
X (version 1.83)19. Gaps and ambiguous bases were
eliminated from the calculations. Distance matrices
for the aligned sequences were calculated by the two-
parameter method of Kimura20. A phylogenetic tree
based on 16S rRNA gene sequences was constructed
by the neighbour-joining method21 with the program
MEGA 422. The confidence values at individual
branches in the phylogenetic tree were determined by
using the bootstrap analysis of Felsenstein23 based on
1000 replications.

Restriction analysis of 16S-23S rRNA gene ITS
regions: The 16S-23S rRNA gene ITS PCR am-
plification was made with two primers24, which
were 5′-TGCGG(C/T)TGGATCACCTCCT-3′ (posi-
tion 1522–1540 on 16S rRNA by the Escherichia
coli numbering system)18 and 5′-GTGCC(A/T)AG-
GCATCCACCG-3′ (position 38–22 on 23S rRNA).
The purified PCR products for Acetobacter isolates
were separately digested with restriction endonucle-
ases TaqI, AluI, HpaII, and AvaII (New England Bi-
oLabs, Beverly, Massachusetts, USA) according to
the manufacturer’s instructions. The resulting reaction
products were analysed by 2.5% (w/v) agarose gel
electrophoresis8.

Acetic acid production

Alcohol dehydrogenase activity assay: ADH ac-
tivity was measured colourimetrically with potassium
ferricyanide as an electron acceptor, as described by
Adachi et al25. Acetobacter isolates were inocu-
lated into 200 ml of potato medium, which contained
0.5% D-glucose, 1% yeast extract, 1% peptone, 2%
glycerol, 10% potato extract at 30 °C for 48 h on a
rotary shaker (200 rpm). Cells were harvested by
centrifugation at 8000g for 10 min and washed twice
with cooled 5 mM K3PO4 buffer, pH 6.0. The washed
cells were re-suspended in the same buffer and placed
in a sonicator at 16 000 lb/min for 10 min. Cell debris
was removed by centrifugation at 8000g for 10 min,
and then the supernatant was used for ADH assay. The
reaction mixture (1 ml) contained enzyme solution,
McIlvaine buffer (McB), pH 5.0, substrate (100 µl
of 1 M ethanol) and 100 µl of 0.1 M ferricyanide
solution. After 5 min, 500 µl of Dupanol reagent
was added, and incubated for 20 min. Then, 3.5 ml
of dH2O was added and mixed well. The absorbance
at 660 nm was measured on a UV spectrophotometer.
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One unit of enzyme activity was defined as the quan-
tity of enzymes catalysing the oxidation of 1 µmol of
ethanol per min under the operating conditions. The
specific activity was expressed as units per mg protein,
and the protein content was determined by the Lowry
method26 with bovine serum albumin as standard.

Effect of ethanol and initial acetic acid concentra-
tion on acetic acid production: The selected isolate
that showed the highest ADH activity was inoculated
and cultivated in 100 ml potato medium at 30 °C on a
rotary shaker (200 rpm) for 24 h.

Effects of initial ethanol concentration: 10 ml of
the culture mentioned before was transferred to 90 ml
YE medium, which contained 0.3% yeast extract
and 0–12% ethanol in a 500 ml embossed flask and
cultivated at 30 °C on a rotary shaker (200 rpm) for
three days. In the YE medium, ethanol concentration
was varied as 0, 2, 4, 6, 8, 10, and 12% (v/v).

Effects of initial acetic acid concentration: 10 ml
of the culture mentioned before was transferred to
90 ml YEA medium, which contained 0.3% yeast
extract, 4% ethanol, and 1–3% acetic acid in a 500 ml
embossed flask and cultivated at 30 °C on a rotary
shaker at 200 rpm for three days. In the YEA medium,
acetic acid concentration was varied as 0, 1, 1.5, 2,
2.5, and 3% (v/v). Samples were taken for biomass
evolution and acetic acid analysed as described below.

Analytical methods

The total biomass evolution was determined by the
turbidimetric method (absorbance at 600 nm mea-
sured on a spectrophotometer). Acetic acid determi-
nation using 1–10% absolute ethanol as standard was
carried out by a gas chromatograph equipped with a
capillary column and an FID detector. All the assays
were performed in triplicate to obtain valid statistical
evaluation of results, expressed as mean± s.e.m.

RESULTS AND DISCUSSION

Strain identification

All isolates had characteristics of Gram-negative, aer-
obic, and rod-shaped. They produced catalase but not
oxidase and showed clear zones on GEY/CaCO3 agar
plates. All isolates oxidized acetate and lactate and
showed a major ubiquinone of Q-9. Therefore, they
were assigned to the genus Acetobacter 6, 13 (Table 1
and Table 2).

The Acetobacter isolates were divided into seven
groups based on the restriction analysis using the
four restriction endonucleases; TaqI, AluI, HpaII, and
AvaII.

Table 1 Identification and ADH activity of isolates assigned
to the genus Acetobacter.

Isolate Source Location ADH activity*

(unit/mg)

Group 1 or A. pasteurianus
PHD-23 Little Yellow Star1 Rayong 7.01± 0.01
PHD-24 Little Yellow Star1 Rayong 5.89± 0.03
PHD-32 Mango2 Khon Kaen 4.63± 0.04
PHD-33 Mango2 Khon Kaen 5.08± 0.02
PHD-56 Peach2 Bangkok 5.68± 0.01
PHD-57 Peach2 Bangkok 5.06± 0.01
PHD-70 Red Grape2 Rayong 4.96± 0.02
PHD-71 Red Grape2 Rayong 5.33± 0.01
PHD-76 Salas2 Rayong 4.89± 0.03
PHD-77 Salas2 Rayong 4.75± 0.04
PHD-78 Salas2 Rayong 3.89± 0.03

Group 2 or A. orientalis
PHD-12 Jujube2 Trad 3.16± 0.02
PHD-34 Mango2 Bangkok 3.89± 0.01
PHD-35 Mango2 Bangkok 3.66± 0.01
PHD-37 Mango2 Nontaburi 3.12± 0.02
PHD-38 Mango2 Nontaburi 2.89± 0.01
PHD-51 Orange2 Khon Kaen 3.45± 0.04
PHD-73 Rumbutan2 Khon Kaen 3.33± 0.01
PHD-74 Rumbutan2 Khon Kaen 4.56± 0.03
PHD-75 Rumbutan2 Khon Kaen 4.12± 0.02

Group 3 or A. lovaniensis
PHD-16 Makrut2 Changmai 4.05± 0.01
PHD-17 Makrut2 Saraburi 4.45± 0.02
PHD-18 Makrut2 Saraburi 3.66± 0.01
PHD-25 Longan2 Rayong 2.58± 0.03
PHD-26 Longan2 Rayong 2.65± 0.02
PHD-63 Pineapple2 Chantaburi 3.12± 0.01
PHD-91 Tamarind2 Chantaburi 3.48± 0.04
PHD-92 Tamarind2 Chantaburi 2.89± 0.02

Group 4 or A. indonesiensis
PHD-3 Guava2 Kanchanaburi 2.05± 0.02
PHD-5 Guava2 Kanchanaburi 2.54± 0.01
PHD-7 Guava2 Ubon 2.28± 0.03
PHD-8 Hog Plum2 Nongkhai 2.72± 0.02
PHD-9 Ixoria/Ixora1 Rayong 2.58± 0.01
PHD-13 Jujube2 Trad 2.75± 0.04
PHD-44 Musk-melon2 Saraburi 2.99± 0.01
PHD-45 Musk-melon2 Saraburi 2.56± 0.01

Group 5 or A. tropicalis
PHD-4 Guava2 Kanchanaburi 2.24± 0.02
PHD-6 Guava2 Ubon 3.14± 0.01
PHD-42 Musk-melon2 Bangkok 2.34± 0.02

(Continues on next page.)

Group 1 included 11 isolates: PHD-23, PHD-24,
PHD-32, PHD-33, PHD-56, PHD-57, PHD-70,
PHD-71, PHD-76, PHD-77, and PHD-78 (Table 1).
They produced acid from L-arabinose, meso-erythri-
tol, D-fructose, D-galactose, D-glucose, D-mannose,
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Table 1 (Cont.)

Isolate Source Location ADH activity*

(unit/mg)

Group 6 or A. ghanensis
PHD-14 Jujube2 Trad 2.12± 0.01
PHD-15 Makrut2 Changmai 3.02± 0.03
PHD-61 Pineapple2 Chantaburi 2.88± 0.02
PHD-62 Pineapple2 Chantaburi 3.12± 0.01
PHD-72 Rose apple2 Ubon 2.11± 0.02

Group 7 or A. orleanensis
PHD-86 Strawberry2 Trad 3.11± 0.04
PHD-87 Strawberry2 Trad 2.14± 0.01
PHD-84 Star fruit2 Chantaburi 3.16± 0.03
PHD-85 Star fruit2 Chantaburi 2.88± 0.01

1 Flower, 2 Fruit
* Values are the mean of three determinations.

D-melibiose, or D-xylose, and weakly from D-arab-
inose, glycerol, D-sorbitol, or sucrose. Some strains
produced acid weakly from dulcitol or raffinose but
not from lactose, maltose, D-mannitol, L-rhamnose,
or L-sorbose. They grew on meso-erythritol but not
on D-arabitol, L-arabitol, or meso-ribitol. They did
not produce 2-keto-D-gluconate from D-glucose. All
isolates grew at 37 °C. They showed almost the same
phenotypic characteristics as the type strain of A. pas-
teurianus2 (Table 2). All the isolates were located
within the cluster of A. pasteurianus in the phyloge-
netic tree based on 16S rRNA gene sequences (Fig. 1)
and had 100% pairwise 16S rRNA gene sequence
similarity to the type strain of A. pasteurianus. A
representative isolate PHD-23 showed the restriction
patterns that coincided with those of the type strain of
A. pasteurianus when digested with TaqI and AluI. In
TaqI digestion, the isolate showed the same restric-
tion pattern as the type strains of A. orientalis and
A. pasteurianus, but differed from the type strain of
A. orientalis when digested with AluI (Fig. 2). DNA
G+C content of isolate PHD-23 was 53.3 mol%. From
the data obtained above, all isolates accommodated to
Group 1 were identified as A. pasteurianus2.

Group 2 included nine isolates: PHD-12,
PHD-34, PHD-35, PHD-37, PHD-38, PHD-51,
PHD-73, PHD-74, and PHD-75 (Table 1). They pro-
duced acid from L-arabinose, D-glucose, D-mannose,
raffinose, or D-xylose but not from D-arabinose,
dulcitol, meso-erythritol, D-galactose, D-fructose,
glycerol, lactose, maltose, D-mannitol, melibiose,
L-rhamnose, L-sorbose, D-sorbitol, or sucrose. The
isolates did not grow on meso-erythritol, D-arabitol,
L-arabitol, or meso-ribitol. They produced 2-keto-
D-gluconate from D-glucose. They showed almost
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Fig. 1 Phylogenetic relationships of isolates of Groups 1–7
based on 16S rRNA gene sequences. The phylogenetic tree
was constructed by the neighbour-joining method. Numbers
at nodes indicate bootstrap percentages derived from 1000
replications.

the same phenotypic characteristics as the type strain
of A. orientalis4 (Table 2). They were located within
the cluster of A. orientalis in the phylogenetic tree
based on 16S rRNA gene sequences (Fig. 1) and had
100% pairwise 16S rRNA gene sequence similarity
to the type strain of A. orientalis. A representative
isolate PHD-12 showed the same restriction pattern as
the type strains of A. orientalis and A. pasteurianus
when digested with TaqI, but differed from the type
strain of A. pasteurianus when digested with AluI
(Fig. 2). Isolate PHD-12 had DNA G+C content
of 52.2 mol%. From the data obtained above, all
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Table 2 Differential characteristics of isolates assigned to the genus Acetobacter.

Characteristic G1 Ap G2 Aori G3 Al G4 Ai G5 At G6 Ag G7 Aorl

Oxidation of
Acetate + + + + + + + + + + + + + +
Lactate + + + + + + + + + + + + + +
Growth at 37 °C +(w4) w −(w2) − −(w3) − − − − − − − − −
Growth at 40 °C −(w2) − − − − − − − − − − − − −
Growth on mannitol agar −(w3) − −(w2) − −(w2) − −(w1) − − − −(w3) w w −
Production of
2-keto gluconic acid − − + + + + + + + + − − + +
5-keto gluconic acid − − − − − − − − − − − − − −
Major quinone Q-9 Q-9 Q-9 Q-9 Q-9 Q-9 Q-9 Q-9 Q-9 Q-9 Q-9 Q-9 Q-9 Q-9

Acid production from
meso-Erythritol +(w4) + −(w2) − − − −(w1) − − − − − − −
Maltose − − − − − − w − − w − − − −
Raffinose w w −(w4) − − − − − w w − − − −
DNA G+C (mol%) 53.3 52.7* 52.2 52.3* 58.3 58.6* 54.2 53.7* 56.0 55.9* 57.1 57.3† 55.8 56.5*

Ap, A. pasteurianus TISTR 1056T; G1, Group 1 (11 isolates); Aori, A. orientalis NBRC 16606T; G2, Group 2 (9 isolates);
Al, A. lovaniensis NBRC 13753T; G3, Group 3 (8 isolates); Ai, A. indonesiensis NBRC 16471T; G4, Group 4 (8 isolates);
At, A. tropicalis NBRC 16470T; G5, Group 5 (3 isolates); Ag, A. ghanensis LMG 23848T; G6, Group 6 (5 isolates);
Aorl, A. orleanensis NBRC 13752T; G7, Group 7 (4 isolates); +, positive; w, weakly positive; −, negative; numbers in
parentheses indicate the isolates showing the reaction. *Data cited from Lisdiyanti et al 4; †Data cited from Cleenwerck
et al 1.
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Fig. 2 Restriction analysis of 16S-23S rRNA gene ITS PCR
products of isolates of Group 1 and Group 2 by digestion
with (a) TaqI and (b) AluI. 1, A. orleanensis NBRC 13752T;
2, A. cerevisiae LMG 1625T; 3, A. syzygii NBRC 16604T;
4, A. ghanensis LMG 23848T; 5, A. cibinongensis NBRC
16605T; 6, A. estunensis NBRC 13751T; 7, A. peroxydans
NBRC 13755T; 8, A. senegalensis LMG 23690T; 9, A. trop-
icalis NBRC 16470T; 10, A. indonesiensis NBRC 16471T;
11, A. lovaniensis NBRC 13753T; 12, A. malorum LMG
1746T; 13, A. nitrogenifigens LMG 23498T; 14, A. orientalis
NBRC 16606T; 15, A. pasteurianus TISTR 1056T; 16,
isolate PHD-23 (Group 1); 17, A. aceti IFO 14818T; 18,
isolate PHD-12 (Group 2); M, 50 bp DNA markers.

isolates accommodated to Group 2 were identified as
A. orientalis4.

Group 3 included eight isolates: PHD-16,
PHD-17, PHD-18, PHD-25, PHD-26, PHD-63,
PHD-91, and PHD-92 (Table 1). They produced acid
from L-arabinose, D-glucose, D-mannose, raffinose,
or D-xylose but not from D-arabinose, dulcitol, meso-

erythritol, D-galactose, D-fructose, glycerol, lac-
tose, maltose, D-mannitol, D-melibiose, L-rhamnose,
L-sorbose, D-sorbitol, or sucrose. They did not grow
on meso-erythritol, D-arabitol, L-arabitol, or meso-
ribitol. They showed almost the same phenotypic
characteristics as A. lovaniensis3 (Table 2). They
were located within the cluster of A. lovaniensis
in the phylogenetic tree based on 16S rRNA gene
sequences (Fig. 1) and had 100% 16S rRNA gene
sequence similarities, respectively, to the type strain
of A. lovaniensis. A representative isolate PHD-16
showed the same restriction patterns as the type strain
of A. lovaniensis when digested with TaqI, HpaII, and
AvaII (Fig. 3). In TaqI digestion, the representative
isolate also showed the same restriction pattern as
the type strains of A. lovaniensis, A. syzygii, and
A. ghanensis, but differed from the type strains of
A. ghanensis and A. syzygii when digested with HpaII
and AvaII. Isolate PHD-16 had 58.3 mol% G+C. From
the data obtained above, all isolates accommodated to
Group 3 were identified as A. lovaniensis3.

Group 4 included eight isolates: PHD-3, PHD-5,
PHD-7, PHD-8, PHD-9, PHD-13, PHD-44, and
PHD-45 (Table 1). They produced acid from
L-arabinose, D-glucose, D-xylose, D-galactose, or
D-mannose. Some isolates produced acids from
D-fructose, D-mannose, D-melibiose, and D-xylose
but not from meso-erythritol, dulcitol, lactose, mal-
tose, D-mannitol, L-rhamnose, raffinose, L-sorbose,
or sucrose. They produced D-gluconate and 2-keto-
D-gluconate from D-glucose, and dihydroxyacetone
from glycerol. They showed almost the same phe-
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Fig. 3 Restriction analysis of 16S-23S rRNA gene ITS PCR
products of isolates of Group 3 by digestion with (a) TaqI,
(b) HpaII, and (c) AvaII. 1, A. orleanensis NBRC 13752T;
2, A. cerevisiae LMG 1625T; 3, A. syzygii NBRC 16604T;
4, A. ghanensis LMG 23848T; 5, A. cibinongensis NBRC
16605T; 6, A. estunensis NBRC 13751T; 7, A. peroxydans
NBRC 13755T; 8, A. senegalensis LMG 23690T; 9, A. trop-
icalis NBRC 16470T; 10, A. indonesiensis NBRC 16471T;
11, A. lovaniensis NBRC 13753T; 12, A. malorum LMG
1746; 13, A. nitrogenifigens LMG 23498T; 14, A. orientalis
NBRC 16606T; 15, A. pasteurianus TISTR 1056T; 16,
A. aceti IFO 14818T; 17, isolate PHD-16 (Group 3); M,
50 bp DNA markers.

notypic characteristics as A. indonesiensis3 (Table 2).
Phylogenetically, they were located within the cluster
of A. indonesiensis in the phylogenetic tree based on
16S rRNA gene sequences (Fig. 1) and had 16S rRNA
gene sequence similarities around 99.9% to the type
strain of A. indonesiensis. A representative isolate
PHD-3 showed the same restriction pattern as the type
strain of A. indonesiensis and differed in this respect
from the type strains of other Acetobacter species
when digested with AluI (Fig. 4). DNA G+C content
of isolate PHD-3 was 54.2 mol%. From the data
obtained above, all isolates accommodated to Group 4
were identified as A. indonesiensis3.

Group 5 included three isolates: PHD-4, PHD-6,
and PHD-42 (Table 1). The isolates produced
acids from L-arabinose, D-galactose, D-glucose, and
D-mannose, and to a less extent from maltose, raffi-
nose, and D-xylose, but not from D-arabinose, dul-
citol, meso-erythritol, D-fructose, glycerol, lactose,
D-mannitol, D-melibiose, L-rhamnose, L-sorbose,
D-sorbitol, and sucrose. They did not grow on meso-
erythritol, D-arabitol, L-arabitol, or meso-ribitol.
They produced D-gluconate and 2-keto-D-gluconate
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Fig. 4 Restriction analysis of 16S-23S rRNA gene ITS PCR
products of isolates of Group 4 by digestion with AluI. 1,
A. orleanensis NBRC 13752T; 2, A. cerevisiae LMG 1625T;
3, A. syzygii NBRC 16604T; 4, A. ghanensis LMG 23848T;
5, A. cibinongensis NBRC 16605T; 6, A. estunensis NBRC
13751T; 7, A. peroxydans NBRC 13755T; 8, A. senegalensis
LMG 23690T; 9, A. tropicalis NBRC 16470T; 10, A. indone-
siensis NBRC 16471T; 11, isolate PHD-3 (Group 4); 12,
A. lovaniensis NBRC 13753T; 13, A. malorum LMG 1746;
14, A. nitrogenifigens LMG 23498; 15, A. orientalis NBRC
16606T; 16, A. pasteurianus TISTR 1056T; 17, A. aceti IFO
14818T; M, 50 bp DNA markers.

from D-glucose, and dihydroxyacetone from glycerol.
They showed almost the same phenotypic characteris-
tics as the type strain of A. tropicalis3 (Table 2). All
isolates were located within the cluster of A. tropicalis
in the phylogenetic tree based on 16S rRNA gene
sequences (Fig. 1) and showed 99.9% pairwise 16S
rDNA sequence similarity with the type strain of
A. tropicalis. A representative isolate PHD-4 showed
the same restriction pattern as the type strain of
A. tropicalis and differed in this respect from the type
strains of other Acetobacter species when digested
with AluI and HpaII (Fig. 5). DNA G+C content of
isolate PHD-4 was 56.0 mol%. From the data obtained
above, all isolates accommodated to Group 5 were
identified as A. tropicalis3.

Group 6 included five isolates: PHD-14, PHD-15,
PHD-61, PHD-62, and PHD-7 (Table 1). The iso-
lates produced acid from D-arabinose, D-glucose,
and D-sorbitol. Some isolates produced acids
from L-arabinose, D-fructose, D-mannose, D-mel-
ibiose, and D-xylose but none did from meso-
erythritol, dulcitol, D-galactose, glycerol, lactose,
maltose, D-mannitol, L-rhamnose, raffinose (one
weakly), L-sorbose, or sucrose. They did not
grow on meso-erythritol, D-arabitol, L-arabitol, and
meso-ribitol (one weakly). They did not produce
2-keto-D-gluconic acid, 5-keto-D-gluconic acid, or
2,5-diketo-D-gluconic acid from D-glucose and grew
on glycerol weakly but not on maltose or methanol as
a carbon source. They showed the same phenotypic
characteristics as the type strain of A. ghanensis1

(Table 2). They were located within the cluster of
A. ghanensis in the phylogenetic tree based on 16S
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Fig. 5 Restriction analysis of 16S-23S rRNA gene ITS PCR
products of isolates of Group 5 by (a) digestion with AluI. 1,
A. orleanensis NBRC 13752T; 2, A. cerevisiae LMG 1625T;
3, A. syzygii NBRC 16604T; 4, A. ghanensis LMG 23848T;
5, A. cibinongensis NBRC 16605T; 6, A. estunensis NBRC
13751T; 7, A. peroxydans NBRC 13755T; 8, A. senegalensis
LMG 23690T; 9, A. tropicalis NBRC 16470T; 10, A. indone-
siensis NBRC 16471T; 11, isolate PHD-4 (Group 5); 12,
A. lovaniensis NBRC 13753T; 13, A. malorum LMG 1746;
14, A. nitrogenifigens LMG 23498T; 15, A. orientalis NBRC
16606T; 16, A. pasteurianus TISTR 1056T; 17, A. aceti IFO
14818T. (b) Digestion with HpaII. 1, A. orleanensis NBRC
13752T; 2, A. cerevisiae LMG 1625T; 3, A. syzygii NBRC
16604T; 4, A. ghanensis LMG 23848T; 5, A. cibinongensis
NBRC 16605T; 6, A. estunensis NBRC 13751T; 7, A. per-
oxydans NBRC 13755T; 8, A. senegalensis LMG 23690T;
9, A. tropicalis NBRC 16470T; 10, A. indonesiensis NBRC
16471T; 11, A. lovaniensis NBRC 13753T; 12, A. malorum
LMG 1746; 13, A. nitrogenifigens LMG 23498T; 14, A. ori-
entalis NBRC 16606T; 15, A. pasteurianus TISTR 1056T;
16, A. aceti IFO 14818T; 17, isolate PHD-4 (Group 5); M,
50 bp DNA markers.

rRNA gene sequences (Fig. 1) and had 16S rRNA
gene sequence similarities around 99.9% to the type
strain of A. ghanensis. A representative isolate
PHD-14 showed the same restriction patterns as the
type strain of A. ghanensis when digested with TaqI,
HpaII, and AvaII. It was discriminated from the type
strains of A. syzygii and A. lovaniensis when digestion
with HpaII and AvaII, respectively (Fig. 6). DNA
G+C content of isolate PHD-14 was 57.1 mol%. From
the data obtained above, all isolates accommodated to
Group 6 were identified as A. ghanensis1.

Group 7 included four isolates: PHD-84,
PHD-85, PHD-86, and PHD-87 (Table 1). They
produced acid from L-arabinose, D-glucose, maltose,
but not from D-arabinose, dulcitol, meso-erythri-
tol, D-fructose, D-galactose, glycerol, lactose, mal-
tose, D-mannitol, D-melibiose, L-rhamnose, raffi-
nose, L-sorbose, D-sorbitol, sucrose, and D-xylose.
They grew on meso-erythritol, but did not grow on
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Fig. 6 Restriction analysis of 16S-23S rRNA gene ITS
PCR product of isolates of Group 6 by digestion with
(a) TaqI, (b) HpaII, and (c) AvaII. 1, A. orleanensis
NBRC 13752T; 2, A. cerevisiae LMG 1625T; 3, A. syzygii
NBRC 16604T; 4, A. ghanensis LMG 23848T; 5, isolate
PHD-14 (Group 6); 6, A. cibinongensis NBRC 16605T;
7, A. estunensis NBRC 13751T; 8, A. peroxydans NBRC
13755T; 9, A. senegalensis LMG 23690T; 10, A. tropicalis
NBRC 16470T; 11, A. indonesiensis NBRC 16471T; 12,
A. lovaniensis NBRC 13753T; 13, A. malorum LMG 1746T;
14, A. nitrogenifigens LMG 23498T; 15, A. orientalis NBRC
16606T; 16, A. pasteurianus TISTR 1056T; 17, A. aceti IFO
14818T; M, 50 bp DNA markers.

D-arabitol, L-arabitol, or meso-ribitol. They produced
D-gluconic acid from D-glucose but did not produce
5-keto-D-gluconic acid from D-glucose. They showed
the same phenotypic characteristics as A. orleanensis3

(Table 2). All isolates were located within the cluster
of A. orleanensis in the phylogenetic tree based on
16S rRNA gene sequences (Fig. 1) and showed 99.9%
pairwise 16S rRNA gene sequence similarities to the
type strain of A. orleanensis. A representative isolate
PHD-85 gave the restriction patterns that coincided
with those of the type strain of A. orleanensis when
digested with HpaII and AvaII (Fig. 7). DNA G+C
content of isolate PHD-85 was 55.8 mol%. From
the data obtained above, all isolates accommodated to
Group 7 were identified as A. orleanensis3.

In the restriction analysis of 16S-23S rRNA gene
ITS PCR products, the four restriction endonucleases,
TaqI, AluI, HpaII, and AvaII were useful for differ-
entiating the Acetobacter strains at the species level.
The type strains of A. orleanensis, A. cibinongensis,
A. estunensis, A. peroxydans, A. senegalensis, A. trop-
icalis, A. indonesiensis, A. nitrogenifigens, A. orien-
talis, A. pasteurianus, and A. aceti were distinguished
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Fig. 7 Restriction analysis of 16S-23S rRNA gene ITS
PCR products of isolates of Group 7 by digestion with
(a) HpaII and (b) AvaII. 1, A. orleanensis NBRC 13752T;
2, isolate PHD-85 (Group 7); 3, A. cerevisiae LMG 1625T;
4, A. syzygii NBRC 16604T, 5, A. ghanensis LMG 23848T;
6, A. cibinongensis NBRC 16605T; 7, A. estunensis NBRC
13751T; 8, A. peroxydans NBRC 13755T; 9, A. senegalen-
sis LMG 23690T; 10, A. tropicalis NBRC 16470T; 11,
A. indonesiensis NBRC 16471T; 12, A. lovaniensis NBRC
13753T; 13, A. malorum LMG 1746T; 14, A. nitrogenifigens
LMG 23498T; 15, A. orientalis NBRC 16606T; 16, A. pas-
teurianus TISTR 1056T; 17, A. aceti IFO 14818T; M, 50 bp
DNA markers.

from one another by TaqI and AluI digestions, while
the type strains of A. cerevisiae, A. ghanensis, and
A. malorum were differentiated from the type strains
of other Acetobacter species by HpaII digestion. In
addition, the type strains of A. syzygii and A. lovanien-
sis were distinguished from the type strains of other
Acetobacter species by AvaII and HpaII digestion.

The 16S-23S rRNA gene ITS restriction analysis
described above is therefore one of the most rapid
methods for molecular identification, when used to-
gether with phenotypic and chemotaxonomic char-
acterizations as well as 16S rRNA gene sequence
analysis.

Acetic acid production by Acetobacter strains
isolated in Thailand

The 47 isolates assigned to the genus Acetobac-
ter showed that ADH activity ranged from 2.05–
7.01 units/mg protein at 30 °C (Table 1). Isolate
PHD-23 identified as A. pasteurianus showed the
highest ADH activity, and was therefore selected for
optimization of acetic acid production. A. pasteuri-
anus isolate PHD-23 produced 0.35, 1.02, 1.50, 0.75,
and 0.56% acetic acid (v/v) without lag time when
ethanol concentrations were changed, respectively, to
0, 2.0, 4.0, 6.0, and 8.0% (v/v) (Fig. 8a). The growth
increased maximally at ethanol concentration of 4.0%
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Fig. 8 (a) Effect of initial ethanol concentrations on acetic
acid production of A. pasteurianus isolate PHD-23 at 0, 2,
4, 6, 8% ethanol and (b) effect of initial acetic acid concen-
tration on acetic acid production of A. pasteurianus isolate
PHD-23 at 0, 1, 1.5, 2, 2.5% acetic acid. Symbols: acetic
acid (column), growth (line), the values are as percentages
and growth is expressed as Optical Density (nm). Tests
were in triplicate to obtain valid statistical evaluation of the
results, expressed as mean± s.e.m.

(v/v). The strain produced 1.5% acetic acid when
4.0% ethanol was used as a carbon source. The effect
of initial acetic acid concentration (0–2% v/v) on
acetic acid production in isolate PHD-23 showed that
the isolate oxidized ethanol and accumulated acetic
acid until the initial concentrations of acetic acid that
was less than 2% (Fig. 8b). The data obtained sug-
gested that isolate PHD-23 could produce the highest
acetic acid concentration when there was no addition
of acetic acid. The growth of the isolate decreased
when the initial acetic acid concentration was more
than 1.0% (v/v). At 2.5% acetic acid (v/v), the
bacterial growth was not observed (Fig. 8b).

Saeki et al27 reported that a thermotolerant acetic
acid bacterium, isolate SKU1180 isolated from Thai-
land, could grow at 37–40 °C and produced 5.06–
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4.42 g/l/h of acetic acid using higher concentrations
of ethanol up to 9%, without any appreciable lag time.

Lu et al28 reported that a thermotolerant acetic
acid bacterium, Acetobacter isolate I14-2 isolated
from a spoiled banana in Taiwan, produced 41 g/l
acetic acid at 37 °C during six-day cultivation in a
medium containing 2 g/l acetic acid and 5% (v/v)
ethanol. The isolate retained 68% acetic acid-pro-
ducing activity when compared with cultivation at
30 °C.

Ndoye et al29 reported two isolates, A. tropicalis
CWBI-B418 and A. pasteurianus CWBIB419, which
were isolated, respectively, from mango and cereal.
The two isolates showed their growth without any
appreciable lag phase and a high level of acetic acid
production at 35 and 38 °C, respectively. At 30 °C,
isolates CWBI-B418 and CWBI-B419 produced 1.5%
and 2% acetic acid w/v, respectively. Isolate CWBI-
B419 produced 2% acetic acid (w/v) at 35 and 38 °C,
and isolate CWBI-B418 produced 2% and 1.8% acetic
acid (w/v) at 35 and 38 °C, respectively.

In comparison with the acetic acid production
mentioned above, a new isolate, A. pasteurianus iso-
late PHD-23 reported in this study oxidized higher
concentrations of ethanol up to 8% without any ap-
preciable lag time, which was similar to the thermo-
tolerant acetic acid bacteria reported by Saeki et al27.
In the acetic acid production at 30 °C, isolate PHD-23
produced acetic acid similar to isolates CWBI-B418
and CWBI-B41929.

Considering the data obtained above, A. pasteuri-
anus isolate PHD-23 has advantages of (1) resistance
to ethanol, (2) high acetic acid productivity, and
(3) easy preservation by lyophilization, so that the
isolate is suitable for vinegar making.
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