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ABSTRACT: Existence and uniqueness problems of piecewise continuous mild solutions for a system governed by
impulsive differential equations in locally convex spaces are solved. The global existence problem is proved for the
uniformly Lipschitz case while the local existence problem is proved for the locally Lipschitz case. A priori estimate is
given and used as an important tool for proving the global existence of a mild solution. The continuous dependence on
impulsive conditions of the system is also proved. Our main results are obtained by using the fixed point theorem of a
seminorm contraction. Some examples are given.
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INTRODUCTION

Impulsive differential equations have been proved to
be a useful subject for applications in various fields of
sciences and other disciplines that involve a process
caused by a short-time perturbation neglecting the
duration of perturbation.

Discontinuous solutions often occur in the process
described by impulsive differential equations. To our
knowledge, there are very few researchers studying
piecewise continuous mild solutions of impulsive sys-
tems in locally convex spaces. This kind of solutions
occurs in dynamical systems with impacts and fric-
tions.

We consider the existence problems of piecewise
continuous mild solutions for a system governed by
the following impulsive differential equations in a
locally convex space X:

dx

dt
= Ax+ fx;B(t), t ∈ [0, T ]−D (1)

∆x(ti) = Ji(x(ti)), ti ∈ D, x(0) = x0 ∈ X,

where T > 0, fx;B(t) := f(t, x(t), Bx(t)), D =
{t1, t2, . . . , tn} is the set of resetting times with
0 < t1 < t2 < · · · < tn < T , and A is the
infinitesimal generator of a C0-semigroup {S(t)}t>0

on a sequentially complete locally convex space X , f
and B are suitable operators and Ji : X → X is an
operator determining the size of the jumps, ∆x(ti) =

x(t+i ) − x(ti) = x(t+i ) − x(t−i ) denotes the jump
of x at the point ti. Impulsive differential equations
were considered for the first time by Milman and
Myshkis1, 2.

A period of active research culminated with the
monograph by Halaney and Wexler3, 4. Many authors
studied properties of mild solutions for systems or
controlled systems governed by impulsive differential
equations in Banach spaces5–7.

It is known that Peano’s theorem may not be valid
in locally convex spaces, even in Banach spaces, i.e.,
the differential equation dx/dt = f(t, x(t)), t > 0
with x(0) = x0 may fail to have solution8–10, e.g.,
Dieudonne8 showed that there is no solution for the
IVP, dx/dt = f(x(t)), x(0) = 0, where f is
continuous in X with

f(x(t)) = f(x1, x2, . . . , xn) = (|xn|
1
2 + 1

n ),

x = (x1, . . . , xn) ∈ X = c0. Some authors studied
the existence of solutions for differential equations in
locally convex spaces11–13.

PRELIMINARIES

Let (X,P ), or X in short, be a sequentially complete
locally convex Hausdorff space, or an S-space in
short, topologized by a family of continuous semi-
norms P = {| · |γ : γ ∈ Γ}. It is well-known
that every Hausdorff locally convex space can be
topologized by a family of seminorms that separates
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points, or a sufficient family of seminorms, i.e., |x|γ =
0 for all γ ∈ Γ if and only if x = 0. The space of all
continuous linear operators from X into itself will be
denoted by L(X). For each A ∈ L(X) and β, γ ∈ Γ,
we define

‖A‖β,γ := sup{|Ax|γ : |x|β 6 1}.

It is clear that A ∈ L(X) if and only if for every γ ∈
Γ there exists β ∈ Γ such that ‖A‖β,γ < ∞. Let
{S(t)}t>0 denote a C0-semigroup of linear operators
on X , that is for each t > 0, S(t) ∈ L(X) with,

(i) S(0) = I ,
(ii) S(t)S(h) = S(t+ h) for all t, h > 0 and
(iii) limh↓0 S(h)x = x, for all x ∈ X .
The generator A of the C0-semigroup {S(t)}t>0

is a linear operator whose domain is D(A),

D(A) = {x ∈ X : lim
h↓0

S(h)x− x
h

exists in X}

and

Ax = lim
h↓0

S(h)x− x
h

for all x ∈ D(A).

Definition 1 Let L0(X) = {S ∈ L(X) : ∀γ ∈
Γ, ∃M(γ) > 0, ∀x ∈ X, |Sx|γ 6 M(γ)|x|γ}. For
each γ ∈ Γ, we define ‖ · ‖γ : L0(X)→ (−∞,∞) as
follows:

‖S‖γ = sup

{
|Sx|γ
|x|γ

: x ∈ X, |x|γ 6= 0

}
.

The following useful facts are known14.

Proposition 1 The following assertions hold:
(i) {‖ · ‖γ : γ ∈ Γ} is a sufficient family of

seminorms on L0(X).
(ii) L0(X) is an m-convex algebra, i.e., for every

γ ∈ Γ and S, T ∈ L0(X), ‖ST‖γ 6 ‖S‖γ‖T‖γ .
(iii) If X is sequentially complete, then L0(X) is

also sequentially complete.

The followings are some examples of locally convex
Hausdorff spaces and C0-semigroups of linear opera-
tors on X .

Example 1 Let X = C((−∞,∞)) be the space of
real continuous functions equipped with the family of
seminorms P = {| · |γ : γ ∈ Γ} defined by

|x|γ = sup{|x(ξ)| : |ξ| < γ},

where γ ∈ Γ, Γ = (0,∞) and x ∈ X . It is obvious
that P separates points in X . Then (X,P ) is a locally

convex Hausdorff space. Also let S : X → X be
defined by

S(x)(ξ) =

{∫ ξ
0
x(η)dη, ξ > 0,

0, ξ 6 0.

It is clear that S is a linear operator and |S(x)|γ 6
γ|x|γ for all x ∈ X and γ ∈ Γ. Furthermore, S ∈
L0(X) and ‖S‖γ 6 γ for all γ ∈ Γ.

Example 2 Let X = C((−∞,∞)) be equipped with
the same topology as above and let S : X → X be
defined by

S(x)(ξ) =

{
e−ξ

∫ ξ
0
x(η)dη, ξ > 0,

0, ξ 6 0.

Let γ ∈ Γ and ξ ∈ [−γ, γ]. Then

|S(x)(ξ)| 6 e−ξ
∫ ξ

0

x(η)dη 6M(γ)|x|γ ,

where

M(γ) =

{
γe−γ , γ 6 1

e−1, γ > 1.

Therefore |S(x)|γ 6 M(γ) for all γ ∈ Γ and for all
x ∈ X . Furthermore, |Sx|γ 6 |x|γ , for all γ ∈ Γ.

Example 3 Let X = C((−∞,∞)) equipped with
the same topology as in Example 2. Let S : [0,∞)→
L(X) be defined by (S(t)x)(ξ) = e−tx(ξ), for all
ξ ∈ (−∞,∞) and x ∈ X . Then S is a C0-semigroup
on X whose infinitesimal generator is the operator
A : X → X defined by Ax = −x. Indeed, for each
γ > 0, we have for each t ∈ [0,∞)

|S(t)x− x|γ 6 (1− e−t)|x|γ ,

and ∣∣∣∣S(t)x− x
t

− x
∣∣∣∣ 6 |e−t + t− 1|

t
|x|γ .

Definition 2 A semigroup S : [0,∞) → L0(X)
is called locally bounded, if for each γ ∈ Γ and
T > 0, there existsM(γ, T ) > 0 such that ‖S(t)‖γ 6
M(γ, T ), for all t ∈ [0, T ].

A semigroup S : [0,∞) → L0(X) is called
bounded, if for each γ ∈ Γ, there exists M(γ) > 0
such that ‖S(t)‖γ 6M(γ), for all t > 0.

Proposition 2 and Theorem 1 below are used to
obtain our main results14.
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Proposition 2 Let S : [0,∞) → L0(X) be a C0-
semigroup. Then the following statements are equiva-
lent:

1. S is locally bounded.
2. For each γ ∈ Γ, there exist M(γ) > 1 and

ω(γ) > 0 such that ‖S(t)‖γ 6 M(γ)eω(γ)t, for all
t > 0.

Theorem 1 Let (X,P ) be an S-space. Suppose that
S : [0,∞) → L(X) is a C0-semigroup whose
generator is A : D(A) → X . Then the following
statements are true:

(i) For t > 0 and x ∈ X ,

lim
h→0

1

h

∫ t+h

t

S(s)(x)ds = S(t)(x).

(ii) For t > 0 and x ∈ X ,
∫ t

0
S(τ)(x)dτ ∈ D(A)

and

A

(∫ t

0

S(τ)(x)dτ

)
= S(t)(x)− x.

(iii) For x ∈ D(A) and t > 0, S(t)(x) ∈ D(A)
and

AS(t)(x) = S(t)A(x).

(iv) If in addition, S(t) ∈ L0(X), for all t > 0
and S is locally bounded, then

d

dt
S(t)(x) = S(t)A(x) = AS(t)(x)

and ∫ t

s

S(τ)A(x)dτ = S(t)(x)− S(s)(x),

for all x ∈ D(A), and s, t > 0.

Definition 3 Let Y be an S-space topologized by a
family of seminorms {‖ · ‖γ : γ ∈ Γ}. Let V ⊂ Y
and γ ∈ Γ. A mapping G : V → V is called a γ-
contraction if there is a constant lγ with 0 6 lγ < 1
such that for all x, y ∈ V

‖Gx−Gy‖γ 6 lγ‖x− y‖γ .

We employ the fixed point theorem of a γ-contrac-
tion15.

Theorem 2 Suppose V is a sequentially complete
subset of an S-space Y topologized by the family
of seminorms {‖ · ‖γ : γ ∈ Γ}, and the mapping
G : V → V is a γ-contraction for every γ ∈ Γ. Then
G has a unique fixed point x in V , i.e., x = Gx.

In proving a priori estimate, we recall the standard
Gronwall’s lemma16.

Lemma 1 (Gronwall’s lemma) If

x(t) 6 a(t) +

∫ t

t0

b(s)x(s)ds, t ∈ [t0, T ),

where x, a, b are continuous on [t0, T ), 0 6 t0 < T 6
∞, and b(t) > 0 on [t0, T ), then x(t) satisfies

x(t) 6 a(t) +

∫ t

t0

a(s)b(s) exp

[∫ t

s

b(u)du

]
ds,

for any t ∈ [t0, T ). If in addition, a(t) is nondecreas-
ing on [t0, T ), then

x(t) 6 a(t) exp

[∫ t

t0

b(s)ds

]
, t ∈ [t0, T ).

MAIN RESULTS

We state and prove our main results for the existence
and the uniqueness of the PC-mild solution for the sys-
tem (1). Finally, we give some examples to illustrate
our abstract results. We state some hypotheses for our
main results.

(H1) X is an S-space topologized by the family
of seminorms {| · |γ : γ ∈ Γ} and PC([0, T ];X) is
the space of all piecewise continuous functions from
[0, T ] into X topologized by the family of seminorms
{‖ · ‖γ,PC : γ ∈ Γ} where

‖x‖γ,PC := max{ sup
t∈[0,T ]

|x(t+)|γ , sup
t∈[0,T ]

|x(t−)|γ},

x ∈ PC([0, T ];X), γ ∈ Γ, together with the
discontinuity points {ti}, where 0 = t0 < t1 <
t2, . . . , tn < T , and prescribed impulsive conditions
x(ti) = x(t−i ), i = 1, 2, . . . , n.

(H2) A is the infinitesimal generator of a C0-
semigroup {S(t)}t>0 on X such that S(t) ∈ L0(X),
and S(·) : [0,∞)→ L0(X) is locally bounded.

(H3) B : PC([0, T ];X) → PC([0, T ];X) is an
operator such that for any γ ∈ Γ there exists kγ,B ∈
L1
loc([0, T ]; [0,∞)) such that

|Bx(t)−By(t)|γ 6 kγ,B(t)|x(t)− y(t)|γ ,

for all x, y ∈ PC([0, T ];X) and all t ∈ [0, T ].
(H4) B : PC([0, T ];X) → PC([0, T ];X) is an

operator such that for any γ ∈ Γ, and ρ > 0, there
exists

kγ,B,ρ(·) ∈ L1
loc([0, T ]; [0,∞))

such that

|Bx(t)−By(t)|γ 6 kγ,B,ρ(t)|x(t)− y(t)|γ ,
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for all x, y ∈ PC([0, T ];X) such that

‖x‖γ,PC 6 ρ, ‖y‖γ,PC 6 ρ, and all t ∈ [0, T ].

(H5) f : [0, T ]×X ×X → X is continuous a.e.
in t and f(t, ·, ·) is measurable in X × X and there
exists a function Kf (·) ∈ L1

loc([0, T ]; [0,∞)), such
that

|f(t, u1, v1)−f(t, u2, v2)|γ 6
Kf (t)(|u1 − u2|γ + |v1 − v2|γ),

for all t ∈ [0, T ], all u1, u2, v1, v2 in X and all γ ∈ Γ.
(H6) f : [0, T ]×X ×X → X is continuous a.e.

in t ∈ [0, T ] and locally Lipschitz in (u, v) ∈ X ×X ,
i.e., for each ρ > 0, there exists a constant Kf,ρ(·) ∈
L1
loc([0, T ]; [0,∞)) such that

|f(t, u1, v1)−f(t, u2, v2)|γ 6
Kf,ρ(t)(|u1 − u2|γ + |v1 − v2|γ),

for all u1, u2, v1, v2 in X such that

|u1|γ 6 ρ, |u2|γ 6 ρ, |v1|γ 6 ρ, |v2|γ 6 ρ,

for all t ∈ [0, T ].
(H7) f : [0, T ] × X × X → X is continuous

in t ∈ [0, T ] and satisfies the linear growth condition,
i.e., for each γ ∈ Γ, there exists a constant K1(γ) > 0
such that

|f(t, u, v)|γ 6 K1(γ)(1 + |u|γ + |v|γ),

for all t ∈ [0, T ], and all u, v ∈ X .
(H8) For each i = 1, . . . , n the mapping Ji :

X → X , satisfies the following property: for each
γ ∈ Γ, there exists ηi(γ) > 0 such that

|Ji(x)− Ji(y)|γ 6 ηi(γ)|x− y|γ

for all x, y ∈ X .

Definition 4 A function x ∈ PC([0, T ];X) satisfy-
ing the integral equation

x(t) = S(t)x0 +

∫ t

0

S(t− s)fx;B(s)ds

+
∑

0<ti<t

S(t− ti)Ji(x(ti)),

is called a PC-mild solution of the system (1).

Indeed, suppose x is a solution of the system (1).
On the interval [ti, ti+1], i = 0, 1, . . . , n where t0 = 0
and tn+1 = T , we let

w(s) = S(t− s)x(s).

Then we obtain

w′(s) = S(t− s)fx;B(s),

and

w(t)− w(t+i ) =

∫ t

ti

w′(s)ds

=

∫ t

ti

S(t− s)fx;B(s)ds.

Then

x(t) = w(t)

= S(t− ti)x(ti) +

∫ t

ti

S(t− s)fx;B(s)ds

+ S(t− ti)Ji(x(ti)),

where t ∈ [ti, ti+1], i = 0, 1, . . . , n. Hence for t ∈
[0, t1], we have

x(t) = S(t)x(0) +

∫ t

0

S(t− s)fx;B(s)ds.

For t ∈ [0, t2], we have

x(t) = S(t− t1)x(t1) +

∫ t

t1

S(t− s)fx;B(s)ds

= S(t− t1)
(
S(t1)x(0) +

∫ t1

0

S(t1 − s)fx;B(s)ds
)

+

∫ t

t1

S(t− s)fx;B(s)ds+ S(t− t1)J1(x(t1))

= S(t)x0 +

∫ t

0

S(t− s)fx;B(s)ds

+ S(t− t1)J1(x(t1)).

Similarly, for t ∈ [0, T ], we have

x(t) = S(t)x0 +

∫ t

0

S(t− s)fx;B(s)ds

+
∑

0<ti<t

S(t− ti)J(x(ti))

where 0 < t1 < t2 < · · · < tn < T .
Our main results consist of solving existence and

uniqueness problems of PC-mild solutions for the
system (1), which are divided into 2 cases. The first
case is when f is uniformly Lipschitz. The latter case
is when f is locally Lipschitz, and we also prove a
priori estimate as it is an important tool for proving
the global existence of a mild solution. Finally, we
show that the continuous dependence on impulsive
conditions is satisfied by the system. Some examples
are used to demonstrate our main results.
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Case 1. Global existence with uniformly Lipschitz
conditions

Theorem 3 Assume the hypotheses (H1), (H2), (H3),
(H5) and (H8) hold. Then the system (1) has a unique
PC-mild solution on [0, T ] provided that

0 6M(γ)

(∫ T

0

Kf (s)(1 + kγ,B(s))ds+

n∑
i=1

ηi(γ)

)
= lγ < 1.

Proof : Let x0 ∈ X . Set

PCx0([0, T ];X) = {x ∈ PC([0, T ];X) : x(0) = x0}.

SinceX is sequentially complete, then PC([0, T ];X)
and PCx0

([0, T ];X) are sequentially complete. De-
fine an operator G on PCx0

([0, T ];X) by

(Gx)(t) = S(t)x0 +

∫ t

0

S(t− s)fx;B(s)ds

+
∑

0<ti<t

S(t− ti)Ji(x(ti)),

provided that x ∈ PCx0([0, T ];X). It is clear that
G : PCx0

([0, T ];X) → PCx0
([0, T ];X). Indeed,

for 0 6 t′ < t 6 t1, we have

|Gx(t)−Gx(t′)|γ 6 |S(t)x0 − S(t′)x0|γ

+

∣∣∣∣∣
∫ t

0

S(t− s)fx;B(s)ds−
∫ t′

0

S(t′ − s)fx;B(s)ds

∣∣∣∣∣
γ

6 |S(t)x0 − S(t′)x0|γ +

∫ t

t′
|S(t− s)fx;B(s)|γds

+

∫ t′

0

|S(t− s)fx;B(s)− S(t′ − s)fx;B(s)|γds

6 |S(t)x0 − S(t′)x0|γ +

∫ t

t′
|S(t− s)fx;B(s)|γds

+

∫ t′

0

|S(t− t′){(S(t′ − s)− I)fx;B(s)}|γds.

Since {S(t)}t>0 is continuous at any t > 0, by the
above inequality, the mappingGx is left continuous at
each t ∈ [0, t1]. For 0 6 t < t′ 6 t1, we have

|Gx(t′)−Gx(t)|γ 6 |S(t′)x0 − S(t)x0|γ

+

∣∣∣∣∣
∫ t′

0

S(t′ − s)fx;B(s)ds−
∫ t

0

S(t− s)fx;B(s)ds

∣∣∣∣∣
γ

6 |S(t′)x0 − S(t)x0|γ +

∫ t′

t

|S(t′ − s)fx;B(s)|γds

+

∫ t

0

|S(t− s){(S(t′ − t)− I)fx;B(s)}|γds.

By the continuity of {S(t)}t>0 and f ,Gx is right con-
tinuous at t ∈ [0, t1]. Therefore, Gx is continuous on
[0, t1], and we can conclude that Gx ∈ C([0, t1];X)
with Gx(0) = x0. On the interval [t1, t2], for any
t1 6 t′ < t 6 t2, we have

|Gx(t)−Gx(t′)|γ 6 |S(t)x0 − S(t′)x0|γ

+

∣∣∣∣∣
∫ t

0

S(t− s)fx;B(s)ds−
∫ t′

0

S(t′ − s)fx;B(s)ds

∣∣∣∣∣
γ

+ |S(t− t1)J1(x(t1))− S(t′ − t1)J1(x(t1))|γ

6 |S(t)x0 − S(t′)x0|γ +

∫ t

t′
|S(t− s)fx;B(s)|γds

+

∫ t′

0

|(S(t− t′)− I){S(t′ − s)fx;B(s)}|γds

+ |S(t− t1)J1(x(t1))− S(t′ − t1)J1(x(t1))|γ .

By the continuity of the semigroup {S(t)}t>0 and f ,
the mapping Gx is left continuous at t. Similarly,
one can show that Gx is right continuous at t. So
Gx is continuous at t ∈ [t1, t2]. By the same
manner, we also obtain that Gx ∈ C([ti, ti+1];X),
i = 2, . . . , n − 1 and Gx ∈ C([tn, T ];X). Therefore
Gx ∈ PCx0

([0, T ];X).
Next, we must show that G is a γ-contraction on

PCx0
([0, T ];X) for each γ ∈ Γ. Let γ ∈ Γ be

arbitrary. For any x, y ∈ PCx0([0, T ];X) and any
t ∈ [0, T ], we have

|Gx(t)−Gy(t)|γ

6
∫ t

0

|S(t− s) (fx;B(s)− fy;B(s))|γ ds

+
∑

0<ti<t

|S(t− ti){Ji(x(ti))− Ji(y(ti))}|γ

6
∫ t

0

‖S(t− s)‖γ |fx;B(s)− fy;B(s)|γ ds

+
∑

0<ti<t

‖S(t− ti)‖γ |Ji(x(ti))− Ji(y(ti))|γ

6M(γ)

∫ t

0

Kf (s)|x(s)− y(s)|γds

+

∫ t

0

Kf (s)|Bx(s)−By(s)|γds

+M(γ)

n∑
i=1

ηi(γ)|x(ti)− y(ti)|γ .

Then we have

‖Gx−Gy‖γ,PC

6M(γ)

(∫ T

0

Kf (s)(1 + kγ,B(s))ds+

n∑
i=1

ηi(γ)

)
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= lγ < 1.

Under the assumption above, by Theorem 2, G has
a unique fixed point in PCx0

([0, T ];X), which is a
unique PC-mild solution of the system (1). Hence the
proof is complete. �

Case 2. Local existence, a priori estimate and
continuous dependence on impulsive conditions

Next, we consider proving the existence and the
uniqueness of a PC-mild solution for the system (1) by
assuming the local Lipschitz continuity of the function
f in the system (1). A priori estimate is a powerful tool
for proving the global existence of a mild solution.
Then by showing that a priori estimate of any solution
of the system (1) exists, we can prove the global
existence of a PC-mild solution for the system (1) on
the interval [0, T ].

Lemma 2 (A priori estimate) Assume the hypothe-
ses (H1), (H2), (H3), (H7) and (H8) hold. Then for
any γ ∈ Γ, there exists a constant ρ(γ, T ) > 0 such
that if x is any PC-mild solution of the system (1) on
the interval [0, T ] then

|x(t)|γ 6 ρ(γ, T ),

for all t ∈ [0, T ].

Proof : Suppose x(·) is a mild solution of the system
(1) on [0, T ]. For any γ ∈ Γ, we have

|x(t)|γ 6 |S(t)x0|γ +

∫ t

0

|S(t− s)fx;B(s)|γds

+
∑

0<ti<t

|S(t− ti)Ji(x(ti))|γ

6M(γ)

(
|x0|γ+

∫ t

0

|fx;B(s)|γds+

n∑
i=1

|Ji(x(ti))|γ

)

6M(γ)

(∫ t

0

K1(γ)(1 + |x(s)|γ + |Bx(s)|γ)ds

)
+M(γ)

(
|x0|γ +

n∑
i=1

ηi(γ)|x(ti)|γ

)

6M(γ)

(
|x0|γ +

∫ t

0

K1(γ)ds+

n∑
i=1

ηi|x(ti)|γ

)

+M(γ)K1(γ)

∫ t

0

|x(s)|γ + kγ,B(s)|x(s)|γds

6 a(t) +

∫ t

0

β(s)|x(s)|γds,

where

a(t) = M(γ)

(
|x0|γ +K1(γ)t+

n∑
i=1

ηi(γ)|x(ti)|γ

)

is a nondecreasing function, independent of the solu-
tion x, and

β(s) = M(γ)K1(γ)(1 + kγ,B(s)) > 0

is integrable for all s ∈ [0, T ]. By using Gronwall’s
lemma (Lemma 1), we obtain

|x(t)|γ 6 a(t) exp

(∫ t

0

β(s)ds

)
6 a(T ) exp

(∫ T

0

β(s)ds

)
= ρ(γ, T ),

where ρ(γ, T ) > 0 is independent of the solution x.
So a priori estimate is proved for any PC-mild solution
of the system (1). �

Theorem 4 (Local existence of a PC-mild solution)
Assume that (H1), (H2), (H4), (H6) and (H8) hold.
Then the system (1) has a unique local PC-mild
solution in PCx0

([0, T ];X) on [0, δ], for some
0 < δ 6 t1, such that

0 6M(γ)

∫ δ

0

Kf,ρ(s)(1 + kγ,B,ρ(s))ds < 1

and

δM(γ)
(∫ δ

0

Kf,ρ(s)(1 + kγ,B,ρ(s))ds+ |fx;B(0)|γ
)

6 1− ε

for a fixed constant ε ∈ (0, 1), where t1 is the first
resetting time.

Proof : Let x0 ∈ X . Let δ ∈ (0, t1] such that

0 6M(γ)

∫ δ

0

Kf,ρ(s)(1 + kγ,B,ρ(s))ds < 1

and

δM(γ)
(∫ δ

0

Kf,ρ(s)(1 + kγ,B,ρ(s))ds+ |fx;B(0)|γ
)

6 1− ε,

for a fixed constant ε ∈ (0, 1), where t1 is the first
resetting time. Set

Ω(x0) = {x ∈ PC([0, T ];X) :

x(0) = x0, |x(t)− x0|γ 6 1, t ∈ [0, δ]}.

Then Ω(x0) is a nonempty sequentially complete,
closed and convex subset of PC([0, T ];X). Define
a mapping G on Ω(x0) by

(Gx)(t) = S(t)x0 +

∫ t

0

S(t− s)fx;B(s)ds.
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We show that (i) G : Ω(x0) → Ω(x0) and (ii) G is a
γ-contraction on Ω(x0). To prove (i), let x ∈ Ω(x0).
Then

|x(t)|γ 6 1 + |x0|γ =: ρ, for all t ∈ [0, δ],

for any γ ∈ Γ. Since {S(t)}t>0 is continuous at t = 0,
we have a fixed constant ε ∈ (0, 1) and

|Gx(t)− x0|γ 6 |S(t)x0 − x0|γ

+

∫ t

0

|S(t− s)fx;B(s)|γds

6M(γ)

∫ t

0

|fx;B(s)− fx;B(0)|γds

+ ε+M(γ)

∫ t

0

|fx;B(0)|γds

6M(γ)

∫ t

0

Kf,ρ(s)|x(s)− x(0)|γds

+M(γ)

∫ t

0

Kf,ρ(s)|Bx(s)−Bx(0)|γds

+ ε+M(γ)δ|fx;B(0)|γ

6 ε+ δM(γ)
(∫ δ

0

Kf,ρ(s)(1 + kγ,B,ρ(s))ds
)

+ |fx;B(0)|γ} 6 1.

Thus Gx ∈ Ω(x0). To prove (ii), suppose x and x ∈
Ω(x0). We have x(0) = x(0) = x0, and for γ ∈ Γ,

|Gx(t)−Gx(t)|γ

6
∫ t

0

|S(t− s){fx;B(s)− fx;B(s)}|γds

6M(γ)

∫ t

0

|fx;B(s)− fx;B(s)|γds

6M(γ)

∫ t

0

Kf,ρ(s)|x(s)− x(s)|γds

+

∫ t

0

Kf,ρ(s)|Bx(s)−Bx(s)|γds

6M(γ)

∫ t

0

Kf,ρ(s)(1 + kγ,B,ρ(s))|x(s)− x(s)|γds

6M(γ)

∫ δ

0

Kf,ρ(s)(1 + kγ,B,ρ(s))ds‖x− x‖γ,Ω(x0).

Therefore,

‖Gx−Gx‖γ,Ω(x0) 6 lγ‖x− x‖γ,Ω(x0),

where

0 6 lγ = M(γ)

∫ δ

0

Kf,ρ(s)(1 + kγ,B,ρ(s))ds < 1.

By using Theorem 2, we have a unique fixed point x
in Ω(x0), so this fixed point is a unique local PC-mild
solution of the system (1) on the interval [0, δ]. �

Theorem 5 (Global existence of a mild solution)
Assume that (H1), (H2), (H4), (H6), (H7) and (H8)
hold. Then the system (1) has a unique global
PC-mild solution on [0, T ], provided that

M(γ)
(∫ ti+1

ti

Kf,ρ∗(1 + kγ,B,ρ∗(s))ds+K1(γ)δ
)

< 1− ε,

for some δ ∈ (0, ti+1−ti), i = 1, . . . , n and ε ∈ (0, 1)
is a fixed constant.

Proof : By the assumptions and Theorem 4, the system
(1) has a unique local PC-mild solution, say x1 on the
interval [0, δ], for some δ ∈ (0, t1], where t1 is the first
resetting time. By Lemma 2, a priori bound exists, so
there is a constant ρ∗ > 0 such that

|x1(t)|γ 6 ρ∗,

for all t ∈ [0, δ]. Set

Ω(x1) = {y ∈ PC([δ, T ];X) :

y(δ) = x1(δ), |y(t)− x1(δ)|γ 6 1, t ∈ [δ, 2δ]}.

Then Ω(x1) is a nonempty, sequentially complete,
closed and convex subset of PC([δ, T ];X). Define
a mapping G on Ω(x1) by

Gy(t) =

∫ t

δ

S(t− δ − s)fy;B(s)ds+ S(t− δ)x1(δ),

t ∈ [δ, 2δ], provided that y ∈ Ω(x1). By the same
argument as in Theorem 4, we have the same constant
δ > 0 as found in Theorem 4 that δ depends only on
ρ∗ such that{

dy
dt = Ay(t) + fy;B(t), t ∈ [δ, t1]

y(δ) = x1(δ),

has a unique mild solution x2 on [δ, 2δ]. Let

z(t) =

{
x1(t), t ∈ [0, δ],

x2(t), t ∈ [δ, 2δ].

Then z is the unique mild solution of the system
(1) on the interval [0, 2δ]. By the same procedure,
since δ depends only on ρ∗, z can be extended to
the interval [2δ, 3δ]. We then obtain the intervals of
existence of mild solutions with equal length δ, i.e.,
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[δ, 2δ], . . . , [nδ, (n + 1)δ] so that t1 ∈ [nδ, (n + 1)δ],
for some n. Hence the system (1) has a unique global
mild solution on [0, t1].

Now, we consider the existence problem of the
system (1) on the interval [t1, t2], where t1, t2 are the
resetting times of the system. We use x(t+1 ) = x(t1)+
J1(x(t1)) as a prescribed condition. Then on [t1, t2],
we let ε ∈ (0, 1) be a fixed constant and set

Ω(x1(t+1 )) = {y ∈ PC([t1, T ];X) :

y(t1) = x1(t+1 ),

|y(t)− x1(t+1 )|γ 6 1, t ∈ [t1, t1 + δ]},

where δ ∈ (0, t2 − t1) such that

1− ε > M(γ)

∫ t1+δ

t1

Kf,ρ(s)(1 + kγ,B,ρ(s))ds

+M(γ)K1(γ)δ.

Then Ω(x1(t+1 )) is a nonempty sequentially complete,
closed and convex subset of PC([t1, T ];X). Define a
mapping G on Ω(x1(t+1 )) by

Gy(t) = S(t− t1)x1(t1) + S(t− t1)J1(x(t1))

+

∫ t

t1

S(t− t1 − s)fx;B(s)ds.

provided that y ∈ Ω(x1(t+1 )). We show that Gy ∈
Ω(x1(t+1 )). For any γ ∈ Γ, we have Gy(t1) =
x1(t1) + J1(x(t1)) = x(t+1 ), and for any t ∈ [t1, t1 +
δ], we have

|Gy(t)− x1(t+1 )|γ 6 |S(t− t1)x1(t1)− x1(t1)|γ

+

∫ t

t1

|S(t− t1 − s)fy;B(s)|γds

6 ε+M(γ)

∫ t

t1

|fy;B(s)|γds

6 ε+M(γ)

∫ t

t1

K1(γ){1 + |y(s)|γ + |By(s)|γ}ds

6 ε+M(γ)K1(γ)δ

+M(γ)

∫ t1+δ

t1

Kf,ρ(s)(1 + kγ,B,ρ(s))ds 6 1.

Then Gy ∈ Ω(x1(t+1 )). Hence

G : Ω(x1(t+1 ))→ Ω(x1(t+1 )).

Similarly, we can show that G is a γ-contraction on
Ω(x1(t+1 )). So G has a fixed point x2 in Ω(x1(t+1 )).
We can extend this x2 to a unique mild solution of
the system (1) on the interval [t1, t2]. By using this

procedure, we have a unique mild solution xn of the
system (1) on the interval [tn−1, tn], n = 1, 2, . . . , n+
1, where t0 = 0, tn+1 = T . Define

x(t) =


x1(t), t ∈ [0, t1],

x2(t), t ∈ [t1, t2],
...
xn+1(t), t ∈ [tn, tn+1].

Then it is easy to show that x is the unique PC-mild
solution of the system (1) on the interval [0, T ]. This
completes the proof. �

Now we investigate the continuous dependence
on impulsive conditions of the system (1).

CONTINUOUS DEPENDENCE OF
SOLUTIONS

Theorem 6 Assume that x and x are PC-mild solu-
tions of the system (1) corresponding to the prescribed
impulsive conditions

x(ti), x(ti), i = 0, 1, . . . , n,

respectively, where t0 = 0, and 0 < t1 < t2 < · · · <
tn < T . Then for each γ ∈ Γ,

|x(t)− x(t)|γ 6

M(γ) exp

(∫ t

0

b(s)ds

) n∑
i=0

ηi(γ)|x(ti)− x(ti)|γ ,

for all t ∈ [0, T ].

Proof :

|x(t)− x(t)|γ 6 |S(t)x(0)− S(t)x(0)|γ

+

∫ t

0

|S(t− s) (fx;B(s)− fx;B(s))|γ ds

+
∑

0<ti<t

|S(t− ti)(Ji(x(ti))− Ji(x(ti)))|γ

6M(γ)|x(0)− x(0)|γ

+M(γ)

∫ t

0

|fx;B(s)− fx;B(s)|γds

+M(γ)

n∑
i=1

ηi(γ)|x(ti)− x(ti)|γ

6M(γ)

n∑
i=1

ηi(γ)|x(ti)− x(ti)|γ

+M(γ)

∫ t

0

Kf (s)|x(s)− x(s)|γds

+M(γ)

∫ t

0

Kf (s)|Bx(s)−Bx(s)|γds
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6M(γ)

n∑
i=1

ηi(γ)|x(ti)− x(ti)|γ

+M(γ)

∫ t

0

Kf (s)(1 + kγ,B(s))|x(s)− x(s)|γds

6M(γ)

n∑
i=1

ηi(γ)|x(ti)− x(ti)|γ

+

∫ t

0

b(s)|x(s)− x(s)|γds.

By using Lemma 1, we have

|x(t)− x(t)|γ 6

M(γ) exp

(∫ t

0

b(s)ds

) n∑
i=0

ηi(γ)|x(ti)− x(ti)|γ .

This shows the continuous dependence on impulsive
conditions of the mild solution. �

We demonstrate our main results via some con-
crete examples.

Example 4 Let X be the space of rapidly decreasing
functions on R with the family of seminorms P , where
P = {pk,n : k, n = 0, 1, . . . } defined by

pk,n(f) = sup
s>0

pk,n(e−sH(s)f)

where f ∈ X , (H(s)f)(ξ) := f(s+ξ), s > 0, ξ ∈ R,
and

pk,n(g) := max
06j6k

sup
ξ∈R
|ξjg(n)(ξ)|.

So

pk,n(f) :=

sup
s>0

[
max

06j6k

{
sup
ξ∈R

∣∣∣∣ξj ∂n∂ξn (e−sf(s+ ξ)
)∣∣∣∣
}]

,

provided f ∈ X . The family P induces a locally
convex topology on X . Actually, the space (X,P )
is a Fréchet space. Consider the following dynamical
system with impulsive conditions

∂
∂ty(t, ξ) = ∂2

∂ξ2 y(t, ξ) + e−t(1 + y(t, ξ))

+
∫ t

0
h(t, s)y(s, ξ)ds, t ∈ [0, 1]− { 1

2} (2)

∆y( 1
2 , ξ) = η(k, n)y( 1

2 , ξ), ξ ∈ (−∞,∞)

y(0, ξ) = y0(ξ), y0 ∈ X,

where h : [0, 1]2 → R is continuous, η : N2
0 →

(−1, 1), y0 ∈ X , N0 = {0, 1, 2, . . . } such that∫ 1

0

(e−s + h(1, s))ds+ |η(k, n)| < 1.

The operator A = ∂2/∂ξ2 generates a P -contraction
C0-semigroup {S(t)}t>0 defined by S(0) = I , I the
identity operator, and for t > 0,

(S(t)y)(ξ) =
1√
4πt

∫ ∞
−∞

e−(ξ−η)2/4ty(η)dη

for all ξ ∈ R. Define x : [0, 1] → X , by x(t)(ξ) =
y(t, ξ), for all ξ ∈ R,

Bx(t)(ξ) =

∫ t

0

h(t, s)y(s, ξ)ds,

J1(x(·))(ξ) = η(k, n)y(·, ξ), ξ ∈ R, and

fx;B(t)(ξ) = e−t(1 + y(t, ξ))

+

∫ t

0

h(t, s)y(s, ξ)ds.

It is clear that f satisfies Lipschitz condition in x ∈ X
and continuous in t ∈ [0, 1]. Then the problem (2) can
be written as

dx

dt
= Ax+ fx;B(t), t ∈ [0, 1]− 1

2 ,

∆x( 1
2 ) = J1(x( 1

2 )), t1 = 1
2 ;x(0) = x0 ∈ X.

It is clear that the system satisfies the hypotheses of
Theorem 3. Hence the system has a unique mild
solution on the interval [0, 1].

Example 5 Let H be the space of real-valued C∞

functions on Rm whose partial derivatives of all orders
belong to L2(Rm). It is known17, 18 that H is a pre-
Hilbert space with inner product

〈f, g〉m =
∑
|α|6m

∫
Rm

Dαf(η)Dαg(η)dη

for all f, g ∈ H . For each m, 〈f, f〉m = ‖f‖2m, ∀f ∈
H , defines a norm on H . For each multi-index α =
(α1, α2, . . . , αm), a seminorm pα is defined on H by

pα(f) = ‖Dαf‖0 =

(∫
Rm

(Dαf(η))2dη

) 1
2

for all f ∈ H .
The totality P of these seminorms pα correspond-

ing to all multi-indices α induces a metrizable locally
convex topology on H . For each seminorm pα, α is a
multi-index. Consider the differential equation

∂

∂t
y(t, ξ) = Ay(t, ξ) + e−ty2(t, ξ)

+

∫ 1

0

h(t, s)y(s, ξ)ds, t ∈ [0, 1]− { 1
2},
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∆y( 1
2 , ξ) = η(α)y( 1

2 , ξ), ξ ∈ Rn,
y(0, ξ) = y0(ξ), y0 ∈ H, ξ ∈ Rn,

where h : [0, 1]2 → R is continuous, η : Nn0 →
(−1, 1), N0 = {0, 1, 2, 3, . . . }, such that∫ 1

0

(e−s + h(1, s))ds+ |η(α)| < 1,

y0 ∈ X , A =
∑m
i=1 ∂

2/∂ξ2
i is the Laplacian operator.

It is known that A generates the contraction C0-
semigroup {G(t) : t > 0} on H defined by G(0) = I
and for t > 0,

(G(t)y)(ξ) =
1

(
√

4πt)
m
2

∫
Rm

e−|ξ−η|
2/4ty(η)dη.

Again a map x : [0, 1]→ H is defined by

x(t)(ξ) = y(t, ξ), for all ξ ∈ Rm, and

Bx(t)(ξ) =

∫ t

0

h(t, s)y(s, ξ)ds.

J1(x(·))(ξ) = η(α)y(·, ξ) is defined on [0, 1] for all
ξ ∈ (−∞,∞), and

fx;B(t)(ξ) = e−ty2(t, ξ)

+

∫ t

0

h(t, s)y(s, ξ)ds.

which is locally Lipschitz in x, and continuous in t ∈
[0, 1], reduces the above problem in the abstract form
and can be studied similarly.

CONCLUSIONS

We have shown that under suitable conditions, the
impulsive system (1) has a unique PC-mild solution
with values in locally convex spaces. The first case
we considered is when f is uniformly Lipschitz while
in the second case is when f is locally Lipschitz. A
priori estimate is proved and used for proving the
global existence of a PC-mild solution. The fixed
point theorem of a seminorm contraction is used to
guarantee the existence and the uniqueness of the
solution. The continuous dependence on impulsive
conditions is also proved for wellposedness of the
system. Some examples are given to illustrate our
results.
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