SHORT REPORT doi: 10.2306/scienceasia1513-1874.2010.36.085

Some results on semigroups admitting ring structure

Yupaporn Kemprasit^{a,*}, Ngarmcherd Danpattanamongkon^a, Knograt Savettaseranee^b

^a Department of Mathematics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

^b Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

*Corresponding author, e-mail: yupaporn.k@chula.ac.th

Received 14 Jul 2009 Accepted 17 Dec 2009

ABSTRACT: Lawson has given a sufficient condition for a semigroup S which guarantees that S does not admit a ring structure. From Lawson's theorem, we have that the multiplicative interval semigroup [0, 1] does not admit a ring structure. In this paper we give an elementary proof of this fact. We then show that the multiplicative interval semigroup [a, 1] with $-1 \le a < 0 < a^2 \le 1$ does not admit the structure of a ring, a fact which cannot be derived from Lawson's theorem. These facts are then applied to show that every nontrivial multiplicative bounded interval semigroup on \mathbb{R} does not admit a ring structure.

KEYWORDS: multiplicative interval semigroup

INTRODUCTION

The multiplicative structure of any ring is by definition a semigroup with zero. Then it is valid to ask whether S^0 is isomorphic to the multiplicative structure of some ring for a given semigroup S where $S^0 = S$ if S has a zero and S contains more than one element, and if S has no zero or S contains only one element, then S^0 is the semigroup with zero 0 adjoined. We say that a semigroup S admits a ring structure if S^0 is isomorphic to the multiplicative structure of some ring $(R, +, \cdot)$. If ϕ is an isomorphism from the semigroup S^0 onto the semigroup (R, \cdot) and we define an operation \oplus on S^0 by

$$x \oplus y = \phi^{-1}(\phi(x) + \phi(y))$$
 for all $x, y \in S^0$,

then (S^0, \oplus, \cdot) is a ring isomorphic to $(R, +, \cdot)$ through ϕ . It follows that S admits a ring structure if and only if there exists an operation + on S^0 such that $(S^0, +, \cdot)$ is a ring. Semigroups admitting ring structure have long been studied. Peinado¹ gave a brief survey of some results on this topic. For some further results, see Refs. 2–6.

Lawson⁷ has proved that if S is a semigroup of order greater than two satisfying the conditions (i) for $x, y \in S, S^1x = S^1y \Rightarrow x = y$ (ii) for all $x, y \in S$, either $S^1x \subseteq S^1y$ or $S^1y \subseteq S^1x$, then S does not admit a ring structure where $S^1 = S$ if S has an identity, and if S has no identity, then S^1 is the semigroup S with identity 1 adjoined. We can see from Lawson's theorem that the multiplicative interval semigroup [0, 1] does not admit a ring structure¹. Consider the multiplicative interval semigroup [a, 1] where $-1 \leq a < 0 < a^2 \leq 1$. If a = -1, then 1[a, 1] = [-1, 1] = -1[a, 1]. Also, if a > -1, then $a[a, 1] = [a, a^2]$, $-a[a, 1] = [-a^2, -a]$, $a < -a^2$, and $a^2 < -a$. These show that Lawson's theorem cannot be applied to determine whether the multiplicative interval semigroup [a, 1] admits a ring structure. In this paper we provide elementary proofs to show that the multiplicative interval semigroups [0, 1] and [a, 1] with $-1 \leq a < 0 < a^2 \leq 1$ do not admit a ring structure. As a consequence, we have that every nontrivial multiplicative bounded interval semigroup on \mathbb{R} does not admit a ring structure. We note that for a nontrivial multiplicative bounded interval semigroup S on \mathbb{R} , S^0 is one of the following types:

 $\begin{array}{ll} [0,a] \mbox{ or } [0,a) & \mbox{ where } 0 < a \leqslant 1, \\ [a,b], (a,b], (a,b) \mbox{ where } -1 \leqslant a < 0 < a^2 \leqslant b \leqslant 1, \\ [a,b) & \mbox{ where } -1 < a < 0 < a^2 < b \leqslant 1 \\ (\mbox{see Ref. 8}). \end{array}$

It is implicit throughout that the multiplication \cdot on a semigroup of real numbers is the usual multiplication between numbers.

MAIN RESULTS

The following two lemmas are needed to show that the multiplicative interval semigroups [0, 1] and [a, 1] with $-1 \leq a < 0 < a^2 \leq 1$ do not admit a ring structure.

Let \mathbb{R} be the set of all real numbers and $\mathbb{R}_0^+ = \{x \in \mathbb{R} \mid x \ge 0\}.$

Lemma 1 Assume that S is a subsemigroup of the semigroup (\mathbb{R}^+_0, \cdot) . If \oplus is an operation on S^0 such that (S^0, \oplus, \cdot) is a ring, then $x \oplus x = 0$ for all $x \in S^0$.

Proof: Let $x \in S^0$. Then $x \oplus y = 0$ for some $y \in S^0$, so $x^2 \oplus xy = x(x \oplus y) = x0 = 0$ and $xy \oplus y^2 = (x \oplus y)y = 0y = 0$. Therefore x^2 and y^2 are additive inverses of xy in the ring (S^0, \oplus, \cdot) . This implies that $x^2 = y^2$. But $x, y \ge 0$, so x = y. Hence $x \oplus x = 0$.

Lemma 2 Assume that S is a subsemigroup of the semigroup (\mathbb{R}, \cdot) . If \oplus is an operation on S^0 such that (S^0, \oplus, \cdot) is a ring, then $x \oplus (-x) = 0$ for every $x \in S^0$ for which $-x \in S^0$.

Proof: Let $x \in S^0 \setminus \{0\}$ be such that $-x \in S^0$. Then $x \oplus (-x) = c$ for some $c \in S^0$ and thus $xc = x(x \oplus (-x)) = x^2 \oplus (-x^2) = (-x)((-x) \oplus x) = -xc$. Since $x \neq 0$, we have that c = -c which implies that c = 0. Hence the desired result follows.

Theorem 1 *The multiplicative interval semigroup* [0, 1] *does not admit a ring structure.*

Proof: Suppose that the semigroup $([0, 1], \cdot)$ admits a ring structure. Then there is an operation \oplus on [0, 1] such that $([0, 1], \oplus, \cdot)$ is a ring. By Lemma 1, $x \oplus x = 0$ for all $x \in [0, 1]$. Let $c \in (0, 1)$. Then $1 \oplus c \neq 0$ and $1 \oplus c \neq 1$. We also have that c[0, 1] = [0, c] is an ideal of the ring $([0, 1], \oplus, \cdot)$. Since $0 < 1 \oplus c < 1$, there is a positive integer n such that $(1 \oplus c)^n \in [0, c]$. But

$$(1 \oplus c)^n = 1 \oplus {\binom{n}{1}}^* c \oplus {\binom{n}{2}}^* c^2 \oplus \cdots$$
$$\oplus {\binom{n}{n-1}}^* c^{n-1} \oplus c^n$$

where k^*c^i means $c^i \oplus c^i \oplus \cdots \oplus c^i$ (k times). Hence we have $(1 \oplus c)^n = 1 \oplus cy$ for some $y \in [0, 1]$. Since $(1 \oplus c)^n$, $cy \in [0, c]$ and [0, c] is an ideal of $([0, 1], \oplus, \cdot)$, it follows that $cy \oplus (1 \oplus c)^n \in [0, c]$. Hence

$$1=1\oplus 0=1\oplus cy\oplus cy=(1\oplus c)^n\oplus cy\in [0,c]$$

which is a contradiction. This proves that the semigroup $([0,1], \cdot)$ does not admit a ring structure, as desired. \Box

Corollary 1 For $0 < a \leq 1$, the multiplicative interval semigroup [0, a] does not admit a ring structure.

Proof: Let $0 < a \leq 1$ and assume that there is an operation \oplus on [0, a] such that $([0, a], \oplus, \cdot)$ is a ring. Define an operation \oplus' on [0, 1] by

$$x \oplus' y = \frac{ax \oplus ay}{a}$$
 for all $x, y \in [0, 1]$.

It is evident that $x \oplus' y = y \oplus' x$ for all $x, y \in [0, 1]$. Also, for $x, y, z \in [0, 1]$,

$$(x \oplus' y) \oplus' z = \left(\frac{ax \oplus ay}{a}\right) \oplus' z$$
$$= \frac{a\left(\frac{ax \oplus ay}{a}\right) \oplus az}{a}$$
$$= \frac{(ax \oplus ay) \oplus az}{a}$$
$$= \frac{ax \oplus (ay \oplus az)}{a}$$
$$= \frac{ax \oplus a\left(\frac{ay \oplus az}{a}\right)}{a}$$
$$= x \oplus' \left(\frac{ay \oplus az}{a}\right)$$
$$= x \oplus' \left(y \oplus' z\right)$$

and

$$x(y \oplus' z) = x \left(\frac{ay \oplus az}{a}\right)$$
$$= \frac{ax(ay \oplus az)}{a^2}$$
$$= \frac{(ax)(ay) \oplus (ax)(az)}{a^2}$$
$$= \frac{a(axy) \oplus a(axz)}{a^2}$$
$$= \frac{a(axy \oplus axz)}{a^2}$$
$$= \frac{axy \oplus axz}{a}$$
$$= xy \oplus' xz.$$

Let $x \in [0, 1]$. Then $x \oplus 0 = (ax \oplus 0)/a = x$. Since $ax \in [0, a]$, $ax \oplus y = 0$ for some $y \in [0, a]$. It follows that $y/a \in [0, 1]$ and

$$x \oplus' \frac{y}{a} = \frac{ax \oplus a(y/a)}{a} = \frac{ax \oplus y}{a} = \frac{0}{a} = 0.$$

This shows that $([0, 1], \oplus', \cdot)$ is a ring which is contrary to Theorem 1.

Corollary 2 For $0 < a \leq 1$, the multiplicative interval semigroup [0, a) does not admit a ring structure.

Proof: Let $0 < a \leq 1$ and assume that there is an operation \oplus on [0, a) such that $([0, a), \oplus, \cdot)$ is a ring. Then for every $c \in (0, a)$, [0, ca) = c[0, a) is an ideal of the ring $([0, a), \oplus, \cdot)$. Let $d \in (0, a)$ and $0 < \epsilon < a(a - d)$. Then $d < d + \epsilon/a < a$, so $[0, (d + \epsilon/a)a) = [0, da + \epsilon)$ is an ideal of the ring $([0, a), \oplus, \cdot)$. It follows that

$$[0, da] = \bigcap_{0 < \epsilon < a(a-d)} [0, da + \epsilon)$$

is an ideal of $([0, a), \oplus, \cdot)$. Thus 0 < da < 1 and $([0, da], \oplus, \cdot)$ is a ring which is contrary to Corollary 1, so the desired result follows.

Theorem 2 The multiplicative interval semigroup [a, 1] with $-1 \leq a < 0 < a^2 \leq 1$ does not admit a ring structure.

Proof: Suppose on the contrary that there is an operation ⊕ on [a, 1] such that $([a, 1], \oplus, \cdot)$ is a ring. From Lemma 2, $x \oplus (-x) = 0$ for all $x \in [a, |a|]$. Since $([a, 1], \oplus)$ is a group, it follows that $\{1 \oplus x \mid x \in (0, \frac{1}{2}a^2]\}$ is an infinite subset of [a, 1]. Then there is an element $c \in (0, \frac{1}{2}a^2]$ such that $1 \oplus c \neq 1$ and $1 \oplus c \neq a$. Thus $-1 \leqslant a < 1 \oplus c < 1$. It follows that $(1 \oplus c)^n \in [-\frac{1}{2}a^2, \frac{1}{2}a^2]$ for some positive integer n. By the binomial expansion of $(1 \oplus c)^n$ in the ring $([a, 1], \oplus, \cdot)$, we have that $(1 \oplus c)^n = 1 \oplus cy$ for some $y \in [a, 1]$ (see the proof of Theorem 1). It is clear that $cy \in [-\frac{1}{2}a^2, \frac{1}{2}a^2]$. Now, as both $(1 \oplus c)^n$ and -cy lie in $[-\frac{1}{2}a^2, \frac{1}{2}a^2]$, we have that $[-\frac{1}{2}a^2, \frac{1}{2}|a|] = \frac{1}{2}|a|[a, 1]$ is an ideal of the ring $([a, 1], \oplus, \cdot)$ containing $[-\frac{1}{2}a^2, \frac{1}{2}a^2]$. This fact yields $(1 \oplus c)^n \oplus (-cy) \in [-\frac{1}{2}a^2, \frac{1}{2}|a|]$. Thus

$$\begin{split} 1 &= 1 \oplus 0 = 1 \oplus cy \oplus (-cy) = (1 \oplus c)^n \oplus (-cy) \\ &\in [\frac{a^2}{2}, \frac{|a|}{2}] \end{split}$$

which is a contradiction.

Corollary 3 The multiplicative interval semigroup [a,b] with $-1 \leq a < 0 < a^2 \leq b \leq 1$ does not admit a ring structure.

Proof: Assume that there is an operation \oplus on [a, b] such that $([a, b], \oplus, \cdot)$ is a ring.

Case 1 $|a| \leq b$. Then $-1 \leq a/b < 0 < (a/b)^2 \leq 1$. Define an operation \oplus' on [a/b, 1] by

$$x\oplus' y=\frac{bx\oplus by}{b} \ \, \text{for all } x,y\in [a/b,1].$$

It can be shown in a similar way to the proof of Corollary 1 that $([a/b, 1], \oplus', \cdot)$ is a ring which is contrary to Theorem 2.

Case 2 |a| > b. Then $a[a, b] = [ab, a^2]$ is an ideal of the ring $([a, b], \oplus, \cdot)$ and $|ab| < a^2$. From Case 1, this is a contradiction. Hence the result follows.

Corollary 4 If S is a multiplicative interval semigroup on \mathbb{R} of one of the types:

then S does not admit a ring structure.

Proof: Assume that there is an operation \oplus on S such that (S, \oplus, \cdot) is a ring. Let $d \in (0, b)$, $k = b^2 - bd$ and $m = \max\{|a|, b\}$. Then k > 0 and m > 0. Let ϵ be such that $0 < \epsilon < k$. Since

$$0 < d + \frac{\epsilon}{m} < d + \frac{b^2 - bd}{m} \leqslant d + \frac{b^2 - bd}{b} = b,$$

we have that $d + \epsilon/m \in S$. Hence $(d + \epsilon/m)S$ is an ideal of the ring (S, \oplus, \cdot) . Also, we have

$$\left(d+\frac{\epsilon}{m}\right)S = \begin{cases} \left(\left(d+\frac{\epsilon}{m}\right)a, \left(d+\frac{\epsilon}{m}\right)b\right], \ S = (a,b],\\ \left(\left(d+\frac{\epsilon}{m}\right)a, \left(d+\frac{\epsilon}{m}\right)b\right), \ S = (a,b),\\ \left[\left(d+\frac{\epsilon}{m}\right)a, \left(d+\frac{\epsilon}{m}\right)b\right), \ S = [a,b), \end{cases}$$

and

$$da > \left(d + \frac{\epsilon}{m}\right)a \ge \left(d + \frac{\epsilon}{|a|}\right)a = da - \epsilon,$$

$$db < \left(d + \frac{\epsilon}{m}\right)b \le \left(d + \frac{\epsilon}{b}\right)b = db + \epsilon.$$

These imply that $[da, db] \subseteq (d + \epsilon/m)S \subseteq [da - \epsilon, da + \epsilon]$ for all ϵ with $0 < \epsilon < k$. Hence

$$[da, db] \subseteq \bigcap_{0 < \epsilon < k} (d + \epsilon/m)S$$
$$\subseteq \bigcap_{0 < \epsilon < k} [da - \epsilon, da + \epsilon]$$
$$= [da, db].$$

Consequently, $[da, db] = \bigcap_{0 < \epsilon < k} (d + \epsilon/m)S$ is an ideal of the ring (S, \oplus, \cdot) . This is contrary to Corollary 3.

Remark 1 Let $0 < a \leq 1$. We define a mapping φ by $\varphi(x) = \frac{1}{x}$ if $x \neq 0$ and $\varphi(0) = 0$. Then φ is clearly an isomorphism between the pairs of interval semigroups (0, a], $[\frac{1}{a}, \infty)$ and (0, a), $(\frac{1}{a}, \infty)$. Hence from Corollary 1 and Corollary 2 we have that the multiplicative unbounded interval semigroups $[b, \infty)$, (b,∞) where $b \ge 1$ do not admit a ring structure. In particular, the semigroup $([1,\infty),\cdot)$ does not admit a ring structure. Note that Chu and Shyr⁴ showed that the semigroup (\mathbb{N}, \cdot) admits a ring structure where $\mathbb{N} = \{1, 2, 3, \ldots\}$. The proof was given by showing that $(\mathbb{N} \cup \{0\}, \cdot) \cong (\mathbb{Z}_2[x], \cdot)$. From this fact, one can see that the multiplicative semigroup \mathbb{O}^+ of positive rational numbers admits a ring structure as follows. If $(\mathbb{N} \cup \{0\}, \oplus, \cdot)$ is a ring, then $(\mathbb{Q}^+ \cup \{0\}, \oplus', \cdot)$ is a ring where

$$\frac{a}{b} \oplus c \frac{c}{d} = \frac{ad \oplus bc}{bd} \quad \text{for all } a, c \in \mathbb{N} \cup \{0\}$$

and $b, d \in \mathbb{N}$.

Remark 2 From the above proofs and some simple modifications, one can see that the following statement holds. If *F* is a subfield of the field \mathbb{R} of real numbers and *I* is a nontrivial multiplicative bounded interval semigroup on \mathbb{R} with $\inf I$, $\sup I \in F$, then the multiplicative semigroup $I \cap F$ does not admit a ring structure. In addition, if $b \in F$ and $b \ge 1$, then the multiplicative semigroups $[b, \infty) \cap F$ and $(b, \infty) \cap F$ do not admit a ring structure.

Remark 3 We note here that Pearson⁸ classified continuous semirings on intervals of \mathbb{R} . Rings are particular cases of semirings. Then Pearson's classification shows that none of the multiplicative interval semigroups considered in this paper admits the structure of a continuous ring.

Acknowledgements: The authors are very grateful to the referees for their valuable comments and suggestions to improve the paper.

REFERENCES

- 1. Peinado RE (1970) On semigroups admitting ring structure. *Semigroup Forum* **1**, 189–208.
- Satayanarayana M (1971) On semigroups admitting ring structure. Semigroup Forum 3, 43–50.
- 3. Satayanarayana M (1973) On semigroups admitting ring structure II. Semigroup Forum 6, 187–9.
- 4. Chu DD, Shyr HJ (1980) Monoids of languages admitting ring structure. *Semigroup Forum* **19**, 127–32.
- 5. Srichaiyarat S (1981) Generalized transformation semigroups admitting ring structure. MSc thesis, Chulalongkorn Univ.
- Kemprasit Y, Siripitukdet M (2002) Matrix semigroups admitting ring structure. *Bull Calcutta Math Soc* 94, 409–12.
- 7. Lawson LJM (1969) The multiplicative semigroup of a ring. PhD thesis, Univ of Tennessee.
- 8. Pearson KR (1966) Interval semirings on R_1 with ordinary multiplication. *J Aust Math Soc* **6**, 273–88.