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ABSTRACT : Lawson has given a sufficient condition for a semigroupS which guarantees thatS does not admit a ring
structure. From Lawson’s theorem, we have that the multiplicative interval semigroup[0, 1] does not admit a ring structure.
In this paper we give an elementary proof of this fact. We then show that the multiplicative interval semigroup[a, 1] with
−1 6 a < 0 < a2 6 1 does not admit the structure of a ring, a fact which cannot be derived from Lawson’s theorem.
These facts are then applied to show that every nontrivial multiplicative bounded interval semigroup onR does not admit a
ring structure.
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INTRODUCTION

The multiplicative structure of any ring is by definition
a semigroup with zero. Then it is valid to ask whether
S0 is isomorphic to the multiplicative structure of
some ring for a given semigroupS whereS0 = S
if S has a zero andS contains more than one element,
and if S has no zero orS contains only one element,
thenS0 is the semigroup with zero0 adjoined. We
say that a semigroupS admits a ring structureif
S0 is isomorphic to the multiplicative structure of
some ring(R,+, ·). If φ is an isomorphism from the
semigroupS0 onto the semigroup(R, ·) and we define
an operation⊕ onS0 by

x⊕ y = φ−1(φ(x) + φ(y)) for all x, y ∈ S0,

then (S0,⊕, ·) is a ring isomorphic to(R,+, ·)
throughφ. It follows that S admits a ring structure
if and only if there exists an operation+ on S0 such
that (S0,+, ·) is a ring. Semigroups admitting ring
structure have long been studied. Peinado1 gave a
brief survey of some results on this topic. For some
further results, see Refs.2–6.

Lawson7 has proved that ifS is a semigroup of
order greater than two satisfying the conditions (i) for
x, y ∈ S, S1x = S1y ⇒ x = y (ii) for all x, y ∈ S,
either S1x ⊆ S1y or S1y ⊆ S1x, then S does
not admit a ring structure whereS1 = S if S has
an identity, and ifS has no identity, thenS1 is the
semigroupS with identity 1 adjoined. We can see
from Lawson’s theorem that the multiplicative interval
semigroup[0, 1] does not admit a ring structure1.
Consider the multiplicative interval semigroup[a, 1]

where−1 6 a < 0 < a2 6 1. If a = −1, then
1[a, 1] = [−1, 1] = −1[a, 1]. Also, if a > −1, then
a[a, 1] = [a, a2], −a[a, 1] = [−a2,−a], a < −a2,
and a2 < −a. These show that Lawson’s theorem
cannot be applied to determine whether the multiplica-
tive interval semigroup[a, 1] admits a ring structure.
In this paper we provide elementary proofs to show
that the multiplicative interval semigroups[0, 1] and
[a, 1] with −1 6 a < 0 < a2 6 1 do not admit a
ring structure. As a consequence, we have that every
nontrivial multiplicative bounded interval semigroup
on R does not admit a ring structure. We note that for
a nontrivial multiplicative bounded interval semigroup
S onR, S0 is one of the following types:
[0, a] or [0, a) where0 < a 6 1,
[a, b], (a, b], (a, b) where−1 6 a < 0 < a2 6 b 6 1,
[a, b) where−1 < a < 0 < a2 < b 6 1
(see Ref.8).

It is implicit throughout that the multiplication·
on a semigroup of real numbers is the usual multipli-
cation between numbers.

MAIN RESULTS

The following two lemmas are needed to show that
the multiplicative interval semigroups[0, 1] and[a, 1]
with −1 6 a < 0 < a2 6 1 do not admit a ring
structure.

Let R be the set of all real numbers andR+
0 =

{x ∈ R | x > 0}.

Lemma 1 Assume thatS is a subsemigroup of the
semigroup(R+

0 , ·). If ⊕ is an operation onS0 such
that(S0,⊕, ·) is a ring, thenx⊕x = 0 for all x ∈ S0.
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Proof: Let x ∈ S0. Thenx⊕ y = 0 for somey ∈ S0,
so x2 ⊕ xy = x(x ⊕ y) = x0 = 0 andxy ⊕ y2 =
(x⊕ y)y = 0y = 0. Thereforex2 andy2 are additive
inverses ofxy in the ring(S0,⊕, ·). This implies that
x2 = y2. But x, y > 0, sox = y. Hencex ⊕ x =
0. �

Lemma 2 Assume thatS is a subsemigroup of the
semigroup(R, ·). If ⊕ is an operation onS0 such
that (S0,⊕, ·) is a ring, thenx ⊕ (−x) = 0 for every
x ∈ S0 for which−x ∈ S0.

Proof: Let x ∈ S0 \ {0} be such that−x ∈ S0. Then
x⊕ (−x) = c for somec ∈ S0 and thusxc = x(x⊕
(−x)) = x2 ⊕ (−x2) = (−x)((−x) ⊕ x) = −xc.
Sincex 6= 0, we have thatc = −c which implies that
c = 0. Hence the desired result follows. �

Theorem 1 The multiplicative interval semigroup
[0, 1] does not admit a ring structure.

Proof: Suppose that the semigroup([0, 1], ·) admits a
ring structure. Then there is an operation⊕ on [0, 1]
such that([0, 1],⊕, ·) is a ring. ByLemma 1, x⊕x =
0 for all x ∈ [0, 1]. Let c ∈ (0, 1). Then1⊕ c 6= 0 and
1⊕ c 6= 1. We also have thatc[0, 1] = [0, c] is an ideal
of the ring([0, 1],⊕, ·). Since0 < 1⊕ c < 1, there is
a positive integern such that(1⊕ c)n ∈ [0, c]. But

(1⊕ c)n = 1⊕
(

n

1

)∗

c⊕
(

n

2

)∗

c2 ⊕ · · ·

⊕
(

n

n− 1

)∗

cn−1 ⊕ cn

wherek∗ci meansci⊕ci⊕· · ·⊕ci (k times). Hence we
have(1⊕c)n = 1⊕cy for somey ∈ [0, 1]. Since(1⊕
c)n, cy ∈ [0, c] and[0, c] is an ideal of([0, 1],⊕, ·), it
follows thatcy ⊕ (1⊕ c)n ∈ [0, c]. Hence

1 = 1⊕ 0 = 1⊕ cy ⊕ cy = (1⊕ c)n ⊕ cy ∈ [0, c]

which is a contradiction. This proves that the semi-
group ([0, 1], ·) does not admit a ring structure, as
desired. �

Corollary 1 For 0 < a 6 1, the multiplicative inter-
val semigroup[0, a] does not admit a ring structure.

Proof: Let 0 < a 6 1 and assume that there is an
operation⊕ on [0, a] such that([0, a],⊕, ·) is a ring.
Define an operation⊕′ on [0, 1] by

x⊕′ y =
ax⊕ ay

a
for all x, y ∈ [0, 1].

It is evident thatx ⊕′ y = y ⊕′ x for all x, y ∈ [0, 1].
Also, for x, y, z ∈ [0, 1],

(x⊕′ y)⊕′ z =
(

ax⊕ ay

a

)
⊕′ z

=
a

(
ax⊕ay

a

)
⊕ az

a

=
(ax⊕ ay)⊕ az

a

=
ax⊕ (ay ⊕ az)

a

=
ax⊕ a

(
ay⊕az

a

)
a

= x⊕′
(

ay ⊕ az

a

)
= x⊕′ (y ⊕′ z)

and

x(y ⊕′ z) = x

(
ay ⊕ az

a

)
=

ax(ay ⊕ az)
a2

=
(ax)(ay)⊕ (ax)(az)

a2

=
a(axy)⊕ a(axz)

a2

=
a(axy ⊕ axz)

a2

=
axy ⊕ axz

a
= xy ⊕′ xz.

Let x ∈ [0, 1]. Thenx⊕′ 0 = (ax⊕ 0)/a = x. Since
ax ∈ [0, a], ax⊕ y = 0 for somey ∈ [0, a]. It follows
thaty/a ∈ [0, 1] and

x⊕′ y

a
=

ax⊕ a (y/a)
a

=
ax⊕ y

a
=

0
a

= 0.

This shows that([0, 1],⊕′, ·) is a ring which is con-
trary toTheorem 1. �

Corollary 2 For 0 < a 6 1, the multiplicative inter-
val semigroup[0, a) does not admit a ring structure.

Proof: Let 0 < a 6 1 and assume that there is an
operation⊕ on [0, a) such that([0, a),⊕, ·) is a ring.
Then for everyc ∈ (0, a), [0, ca) = c[0, a) is an
ideal of the ring([0, a),⊕, ·). Let d ∈ (0, a) and
0 < ε < a(a − d). Thend < d + ε/a < a, so
[0, (d + ε/a)a) = [0, da + ε) is an ideal of the ring
([0, a),⊕, ·). It follows that

[0, da] =
⋂

0<ε<a(a−d)

[0, da + ε)
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is an ideal of([0, a),⊕, ·). Thus0 < da < 1 and
([0, da],⊕, ·) is a ring which is contrary toCorollary 1,
so the desired result follows. �

Theorem 2 The multiplicative interval semigroup
[a, 1] with −1 6 a < 0 < a2 6 1 does not admit
a ring structure.

Proof: Suppose on the contrary that there is an
operation⊕ on [a, 1] such that([a, 1],⊕, ·) is a ring.
From Lemma 2, x ⊕ (−x) = 0 for all x ∈ [a, |a|].
Since([a, 1],⊕) is a group, it follows that{1 ⊕ x |
x ∈ (0, 1

2a2]} is an infinite subset of[a, 1]. Then
there is an elementc ∈ (0, 1

2a2] such that1 ⊕ c 6= 1
and 1 ⊕ c 6= a. Thus−1 6 a < 1 ⊕ c < 1. It
follows that(1⊕c)n ∈ [− 1

2a2, 1
2a2] for some positive

integern. By the binomial expansion of(1 ⊕ c)n in
the ring([a, 1],⊕, ·), we have that(1⊕ c)n = 1⊕ cy
for somey ∈ [a, 1] (see the proof ofTheorem 1).
It is clear thatcy ∈ [− 1

2a2, 1
2a2]. Now, as both

(1 ⊕ c)n and−cy lie in [− 1
2a2, 1

2a2], we have that
[− 1

2a2, 1
2 |a|] = 1

2 |a|[a, 1] is an ideal of the ring
([a, 1],⊕, ·) containing[− 1

2a2, 1
2a2]. This fact yields

(1⊕ c)n ⊕ (−cy) ∈ [− 1
2a2, 1

2 |a|]. Thus

1 = 1⊕ 0 = 1⊕ cy ⊕ (−cy) = (1⊕ c)n ⊕ (−cy)

∈ [
a2

2
,
|a|
2

]

which is a contradiction. �

Corollary 3 The multiplicative interval semigroup
[a, b] with −1 6 a < 0 < a2 6 b 6 1 does not
admit a ring structure.

Proof: Assume that there is an operation⊕ on [a, b]
such that([a, b],⊕, ·) is a ring.
Case 1|a| 6 b. Then−1 6 a/b < 0 < (a/b)2 6 1.
Define an operation⊕′ on [a/b, 1] by

x⊕′ y =
bx⊕ by

b
for all x, y ∈ [a/b, 1].

It can be shown in a similar way to the proof of
Corollary 1 that ([a/b, 1],⊕′, ·) is a ring which is
contrary toTheorem 2.
Case 2|a| > b. Thena[a, b] = [ab, a2] is an ideal of
the ring([a, b],⊕, ·) and|ab| < a2. From Case 1, this
is a contradiction. Hence the result follows. �

Corollary 4 If S is a multiplicative interval semi-
group onR of one of the types:

(a, b] or (a, b) where−1 6 a < 0 < a2 6 b 6 1
[a, b) where−1 < a < 0 < a2 < b 6 1,

thenS does not admit a ring structure.

Proof: Assume that there is an operation⊕ onS such
that(S,⊕, ·) is a ring. Letd ∈ (0, b), k = b2− bd and
m = max{|a|, b}. Thenk > 0 andm > 0. Let ε be
such that0 < ε < k. Since

0 < d +
ε

m
< d +

b2 − bd

m
6 d +

b2 − bd

b
= b,

we have thatd + ε/m ∈ S. Hence(d + ε/m)S is an
ideal of the ring(S,⊕, ·). Also, we have

(
d +

ε

m

)
S =


(
(d + ε

m )a, (d + ε
m )b

]
, S = (a, b],(

(d + ε
m )a, (d + ε

m )b
)
, S = (a, b),[

(d + ε
m )a, (d + ε

m )b
)
, S = [a, b),

and

da >
(
d +

ε

m

)
a > (d +

ε

|a|
)a = da− ε,

db <
(
d +

ε

m

)
b 6

(
d +

ε

b

)
b = db + ε.

These imply that[da, db] ⊆ (d + ε/m)S ⊆ [da −
ε, da + ε] for all ε with 0 < ε < k. Hence

[da, db] ⊆
⋂

0<ε<k

(d + ε/m)S

⊆
⋂

0<ε<k

[da− ε, da + ε]

= [da, db].

Consequently,[da, db] =
⋂

0<ε<k(d + ε/m)S is
an ideal of the ring(S,⊕, ·). This is contrary to
Corollary 3. �

Remark 1 Let 0 < a 6 1. We define a mappingϕ
by ϕ(x) = 1

x if x 6= 0 andϕ(0) = 0. Thenϕ is
clearly an isomorphism between the pairs of interval
semigroups(0, a], [ 1a ,∞) and(0, a), ( 1

a ,∞). Hence
from Corollary 1 and Corollary 2 we have that the
multiplicative unbounded interval semigroups[b,∞),
(b,∞) whereb > 1 do not admit a ring structure. In
particular, the semigroup([1,∞), ·) does not admit
a ring structure. Note that Chu and Shyr4 showed
that the semigroup(N, ·) admits a ring structure where
N = {1, 2, 3, . . .}. The proof was given by showing
that(N ∪ {0}, ·) ∼= (Z2[x], ·). From this fact, one can
see that the multiplicative semigroupQ+ of positive
rational numbers admits a ring structure as follows. If
(N ∪ {0},⊕, ·) is a ring, then(Q+ ∪ {0},⊕′

, ·) is a
ring where

a

b
⊕

′ c

d
=

ad⊕ bc

bd
for all a, c ∈ N ∪ {0}

and b, d ∈ N.
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Remark 2 From the above proofs and some simple
modifications, one can see that the following state-
ment holds. IfF is a subfield of the fieldR of real
numbers andI is a nontrivial multiplicative bounded
interval semigroup onR with inf I, sup I ∈ F , then
the multiplicative semigroupI ∩ F does not admit a
ring structure. In addition, ifb ∈ F andb > 1, then the
multiplicative semigroups[b,∞) ∩ F and(b,∞) ∩ F
do not admit a ring structure.

Remark 3 We note here that Pearson8 classified con-
tinuous semirings on intervals ofR. Rings are partic-
ular cases of semirings. Then Pearson’s classification
shows that none of the multiplicative interval semi-
groups considered in this paper admits the structure of
a continuous ring.
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