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Some results on semigroups admitting ring structure
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ABSTRACT: Lawson has given a sufficient condition for a semigrauprhich guarantees thet does not admit a ring
structure. From Lawson’s theorem, we have that the multiplicative interval semifffoliloes not admit a ring structure.

In this paper we give an elementary proof of this fact. We then show that the multiplicative interval semigrpupith

—1 < a < 0 < a? < 1 does not admit the structure of a ring, a fact which cannot be derived from Lawson’s theorem.
These facts are then applied to show that every nontrivial multiplicative bounded interval semigiujmesa not admit a

ring structure.

KEYWORDS: multiplicative interval semigroup

INTRODUCTION where—1 < a < 0 < a®? < 1. If a = —1, then
The multiplicative structure of any ring is by definition 1[4 1] = [’17%] = —1a,1]. AI502, ifa > -1, thean
1] = [a,a?], —ala,1] = [—a®,—a], a < —a?,

a semigroup with zero. Then itis valid to ask whethef' %> ) o how th < th
S0 is isomorphic to the multiplicative structure of@"da” < —a. These show that Lawson’s theorem

some ring for a given semigrou$ where S° = S cannot be applied to determine whether the multiplica-
if 5 has a zero and contains more than one element V€ interval semigroufia, 1] admits a ring structure.
and if S has no zero of contains only one element, " thiS paper we provide elementary proofs to show
then ¥ is the semigroup with zero adjoined. We that thg multiplicative |nterva2l semigroups, 1] and

say that a semigrous admits a ring structureif [a,1] with —1 < @ < 0 < a® < 1 do not admit a

59 is isomorphic to the multiplicative structure of N9 Structure. As a consequence, we have that every
some ring(R, +, ). If ¢ is an isomorphism from the nontrivial multiplicative bounded interval semigroup

semigroupS® onto the semigroufi, -) and we define on R does not admit a ring structure. We note that for
an operations on S° by a nontrivial multiplicative bounded interval semigroup

S onR, S is one of the following types:
@y =¢ o)+ o(y)) forallz,y € S°, [0,a) or[0,a)  whered <a <1,

. _ . b], (a,b], (a,b) where—1 < 0<a?<bgl,
then (S°, @,-) is a ring isomorphic to(R,+,) [a, ], (a,], (a,b) W ere_ @< <a2
. . [a,b) where—1<a<0<a®<b<1
through¢. It follows that S admits a ring structure (see Ref8)

. . : . o
if and only If there exists an operatiop on 5 such It is implicit throughout that the multiplication

O . i i i i i i - . . .
trt]at (tS ’+h’ ) |s|a “ng' Sent1|?jrogpspaqrr?;tt|ng "9 on a semigroup of real numbers is the usual multipli-
structure have long been studied. Peinadave a cation between numbers.

brief survey of some results on this topic. For some
further results, see Ref2-6. MAIN RESULTS

Lawsor' has proved that iy is a semigroup of pe following two lemmas are needed to show that
order greater than two satisfying the conditions (i) fog;, multiplicative interval semigrougé, 1] anda, 1]

vyeS Sto=Sy=z=y()foral z.y €5, Wwith | < 4 <0< a2 < 1 do not admit a ring
either S’z C S'y or S'y C S'z, then S does gy cture.

not admit a ring structure whers! = S if S has Let R be the set of all real numbers aiig =
an identity, and ifS has no identity, therf! is the {reR|z >0}

semigroupsS with identity 1 adjoined. We can see

from Lawson’s theorem that the multiplicative intervalLemma 1 Assume thatS is a subsemigroup of the
semigroup|[0, 1] does not admit a ring structute semigroup(R7,-). If @ is an operation onS° such
Consider the multiplicative interval semigrolip, 1]  that(S°, @, ) is aring, thent®z = 0 forall x € S°.
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Proof: Letx € S°. Thenz @ y = 0 for somey € S°,
soz? @ oy = x(r @ y) = 20 = 0 anday ® y? =
(r @ y)y = Oy = 0. Thereforex? andy? are additive
inverses ofry in the ring(S°, @, -). This implies that
2 =% Butz,y > OSOx—y Hencex & x =
0. O

Lemma 2 Assume thatS is a subsemigroup of the

semigroup(R, ). If @ is an operation onS° such
that (S°, @, -) is aring, thenz @ (—x) = 0 for every
x € S° for which—z € S°.

Proof: Letz € S°\ {0} be such that-z € S°. Then
x @ (—x) = c for somec € S° and thusre = z(x @
(~2)) = 22 ® (=2?) = (~2)((~2) D &) = —zc.
Sincezx # 0, we have that = —c which implies that
¢ = 0. Hence the desired result follows. O

Theorem 1 The multiplicative interval semigroup

[0, 1] does not admit a ring structure.

Proof: Suppose that the semigroy, 1], -) admits a
ring structure. Then there is an operatioron [0, 1]
such tha([0,1],, ) isaring. ByLemmalz @z =
Oforall z € [0,1]. Letc € (0,1). Thenl® ¢ # 0 and
1®c # 1. We also have thaf0, 1] = [0, ¢] is an ideal
of the ring([0, 1], &, -). Sinced < 1 ® ¢ < 1, there is
a positive integen. such thaf1 & ¢)™ € [0, ¢|. But

(1@0)":1@(?) c@(Z) @
< n )* n—1 n
©® 1 c ®c
n—

wherek*ct means@ci@- - -@ct (k times). Hence we
have(1®c)™ = 1@ cy for somey € [0, 1]. Since(1®
o)™, ey € [0, c] and|0, ¢] is an ideal of([0, 1], ®, -), it
follows thatcy @ (1 @ ¢)™ € [0, ¢|. Hence

1=100=1®cydcy=(1®c)"®cy €0,

which is a contradiction. This proves that the semiCorollary 2 For 0 < a <

group ([0,
desired.

Corollary 1 For 0 < a < 1, the multiplicative inter-
val semigrouf0, «] does not admit a ring structure.

Proof: Let0 < a < 1 and assume that there is an0 < € < a(a — d).

operation® on [0, a] such that([0, a], ®, -) is a ring.
Define an operatiom’ on [0, 1] by

@ y= wday forallz,y € [0, 1].
a
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It is evident thatr & y
Also, forz,y,z € [0,1

=y @ zforalz,ye[0,1].

(az@ay)

a ar@ay) EBCLZ
a
_ (ax D ay) D az

(z@' y) @

a
ax ® (ay ® az)
a
D
a3 (2522)

a

, [ay D az
< ()

@ (y@' 2)

and

x(y@,z):x(ay@az>

a
_ax(ay © az)
=
(ax)(ay) © (ax
a2
alazy) ® alaxz)
a2
alary ® arz)
a2
axy D arz

)(az)

a
=2y @ x2.
Letz € [0,1]. Thenz &' 0 = (ax @ 0)/a = z. Since
ax € [0,al, ax ®y = 0 for somey € [0, a]. It follows
thaty/a € [0, 1] and
ar®y O

ar Da(y/a) _0_,
a a4 a

This shows that[0, 1], @, ) is a ring which is con-
trary toTheorem 1 O

oY=

1, the multiplicative inter-

1],-) does not admit a ring structure, asval semigroud0, a) does not admit a ring structure.

Proof: Let0 < a < 1 and assume that there is an
operation® on [0, a) such that([0,a), ®,-) is a ring.
Then for everyec € (0,a), [0,ca) = ¢[0,a) is an
ideal of the ring([0,a),®,-). Letd € (0,a) and
Thend < d + ¢/a < a, SO
[0, (d + €¢/a)a) = [0,da + €) is an ideal of the ring
([0,a), &, -). It follows that

M

0<e<a(a—d)

[0,da] = [0,da + €)
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is an ideal of([0,a),®,-). ThusO < da < 1 and thenS does not admit a ring structure.
([0, da], @, -) is aring which is contrary t€orollary 1

so the desired result follows. Proof: Assume that there is an operati@on S such

that(S, @, -) is aring. Letd € (0,b), k = b* — bd and
Theorem 2 The multiplicative interval semigroup ™ = max{|al,b}. Thenk > 0 andm > 0. Lete be
[a,1] with —1 < a < 0 < a? < 1 does not admit suchthab < e < k. Since
a ring structure. b2 _ bd b2 — bd

O<d+ = <d+ <d+ 2
Proof: Suppose on the contrary that there is an m m
operation® on [a, 1] such that([a, 1],®, ) is a ring. we have thatl + ¢/m € S. Hence(d + ¢/m)S is an

b,

FromLemma 2 z & (—z) = 0 for all z € [a,|a|]. ideal of the ring(S, @, -). Also, we have

Since([a, 1], ®) is a group, it follows tha{l & = |

x € (0,1a?} is an infinite subset ofa,1]. Then . ((d+ ), (d+ 6], S = (a,b],
there is an element € (0, 3a?] such thatl ® ¢ # 1 (d+ E) S=1q((d+ £)a, (d+ £)b), S=(a,b),
andl ®c # a. Thus—1 < a < 1®dc < 1. It [(d+ <)a, (d+ <)b), S =[a,b),

follows that(1® c)" € [—1a?, $a?] for some positive
integern. By the binomial expansion dfl & ¢)" in ~ and
the ring([a, 1], ®, -), we have thatl ® ¢)” =1 @ cy

for somey € [a,1] (see the proof ofTheorem }.

It is clear thatcy € [—3a? 2a?]. Now, as both
(1 ® ¢)" and —cy lie in [-3a?, 3a?], we have that
[—%a? ial] = 3lalla,1] is an ideal of the ring
([a, 1], ®, -) containing[—1a?, La?]. This fact yields
( |

da > (d—i—i)a}(d—l—i)a:da—e,
m lal

€ €
_ < s —
ab < (d+ m)b\ (a+ b)b db+ €.
i These imply thaida,db] C (d + ¢/m)S C [da —
’ 2702 d for all e with k. Hence
1®c)" @ (—cy) € [~1a?, ]af]. Thus 6 da+ ewith 0 < e <
[da,db] C (1) (d+e/m)S

1=100=10cy® (~cy) = (1@ )" ® (—cy) O<e<k
e[aj M] - m [da — €,da + €]
2 ’ 2 O<e<k
which is a contradiction. O = [da, db].

Consequently,[da,db] = (Ny...x(d + €¢/m)S is
an ideal of the ring(S,®,-). This is contrary to
Corollary 3 O

Corollary 3 The multiplicative interval semigroup
[a,b] with —1 < a < 0 < a? < b < 1 does not
admit a ring structure.

Remark 1 Let0 < a < 1. We define a mapping
by p(z) = 1 if 2 # 0andp(0) = 0. Theny is
clearly an isomorphism between the pairs of interval
semigroupg0, al, [£,00) and(0,a), (£,00). Hence
from Corollary 1 and Corollary 2we have that the
b & by multiplicative unbounded inter\{al sgmigrouﬂbsoo),
forallz,y € [a/b, 1]. (b, 00) whereb > 1 do not admit a ring structure. In
particular, the semigroug[1,cc),-) does not admit
It can be shown in a similar way to the proof ofa ring structure. Note that Chu and Shyhowed
Corollary 1 that ([a/b,1],&',-) is a ring which is that the semigroufl, -) admits a ring structure where
contrary toTheorem 2 N = {1,2,3,...}. The proof was given by showing
Case 2|a| > b. Thenala,b] = [ab,a?] is an ideal of that(N U {0},-) & (Z,[z], -). From this fact, one can
the ring([a, b], ®, ) and|ab| < a®. From Case 1, this see that the multiplicative semigrop" of positive
is a contradiction. Hence the result follows. [ rational numbers admits a ring structure as follows. If

(N U {0},®,) is aring, then(Q* U {0},&, ) is a

Proof: Assume that there is an operatignon [a, b]
such thaf([a, b], ®, -) is a ring.

Case 1ja] < b. Then—1 < a/b < 0 < (a/b)? < 1.
Define an operationy’ on [a/b, 1] by

x@'y:

Corollary 4 If S is a multiplicative interval semi-

ring where
group onR of one of the types: J
a ¢ ad®bc
(a,b] or (a,b) where—1 <a<0<a?<b< 1 3@ 5= foralla,ceNU{0}
[a,b) where—1 <a <0 <a®> <b<1, and b, d € N.
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Remark 2 From the above proofs and some simple
modifications, one can see that the following state-
ment holds. IfF is a subfield of the fielR of real
numbers and is a nontrivial multiplicative bounded
interval semigroup ofR with inf I, sup I € F, then
the multiplicative semigroug N F' does not admit a
ring structure. In addition, & € F'andb > 1, thenthe
multiplicative semigroup®, co) N F' and (b, c0) N F

do not admit a ring structure.

Remark 3 We note here that Pearsbolassified con-
tinuous semirings on intervals &. Rings are partic-
ular cases of semirings. Then Pearson’s classification
shows that none of the multiplicative interval semi-
groups considered in this paper admits the structure of
a continuous ring.
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