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ABSTRACT: An analytical investigation was conducted in which about 1000 sample points from over 400 borehole
locations throughout the Tucson Basin, Arizona were used to determine the nature and extent of the variability of selected
collapse criteria and collapse-related soil parameters both spatially and with depth. Analysis of seven data sets corresponding
to different depth increments below the surface showed high dispersion tendencies as expressed by the value of coefficient of
variation (CoV). The value of CoV was found to increase linearly with depth. All the collapse criteria and collapse-related
soil parameters used in the study were found to follow a Gamma distribution except for two collapse-related soil parameters
which were found to follow a Weibull distribution. A polynomial regression model was developed for the collapse criterion,
Cp, which is defined as the percentage volumetric strain occurring in a soil sample when saturated under constant load.
The model showed that, varies almost linearly with depth. A stepwise regression analysis revealed'ghatstrongly
correlated with two collapse-related soil parameters, namely, in situ dry deng)tyiid in situ moisture contentu).

Factor analysis validated this finding by producing two strong factors which described almost 80% of the total variance.
These factors were closely relateditpand in situ degree of saturation, which is directly relateddothe in situ void ratio,

and the specific gravity of solids.
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INTRODUCTION cess. Such soils undergo a large decrease in bulk
volume virtually instantaneously upon saturation or
A considerable portion of the geotechnical engineer®ad application and are known as collapsing soils.
effort is devoted to the identification of soils and theHowever, even within the context of this definition, it
evaluation of their properties for use in a particulars difficult to identify collapse susceptible soils due to
analysis. Because of the variation of soil propertieghe existence of many different types of clay minerals
the uncertainty in determining soil parameters can bend many other factors that contribute to the collapse
very high. Even within a limited area, soil propertiepphenomenon. Therefore, application of statistical
may vary due to inherent variation or heterogeneitgnd probabilistic methods in analysing collapsing soil
of the soil stratd. Differences in testing techniques, parameter would provide an optimum solution.
equipment, and overall human factors also add to the In this study statistical techniques were applied
difficulty in evaluating these parameters deterministo selected collapse criteria and collapse-related soll
tically. A statistical approach to geotechnical engiparameters for soil in Tucson, Arizona, where the
neering problems provides a rational basis to achieygesence of collapse-susceptible soils is well docu-
a more economical solution by avoiding the use ofmented*. Previous work on this topic was limited
extreme values and by quantifying the uncertainty in anly to studies involving either specific areas or spe-
solutior?. In general, a soil deposit in a region may beeific soil parameters. The purpose of this study was to
either residual or transported. Also a transported sajather as much information as possible from reliable
may be alluvial (stream borne), aeolian (wind borne)ources and to use this data with statistical techniques,
or colluvial (gravity transported). When alluvial soilssuch as regression and factor analysis, to determine
are deposited in an arid or a semi-arid environmenthe variation of selected collapse criteria and collapse-
they develop larger voids within their structure dueelated soil parameters in three dimensions. Only the
to the high evaporation rate during consolidation provariation of these criteria with depth will be consid-
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ered here. Other geostatistical aspects of the problerable 1 Critical values for non-collapsing (NC), medium
were also studied by the authors and are presentedllapsing (MC), and high collapse (HC) soil parameters.

9
elsewheré™. Parameter HC NC MC
COLLAPSE CRITERIA AND RELATED a ) >>154 Dy 1o << e
PARAMETERS no (%) S 45 <40 40 <no < 45
) i ) i . .eo >0.82 < 0.67 0.67 < ep < 0.82
When soils are deposited in an arid or semi-arigq,(pcf) <91.0 > 99.0 91.0 < vq < 99.0
environment, there is insufficient time for them toigOL(wO/SO) >0.308 <0253 0~Qfg’<<1§fi<<%§08
consolidate under their own weight due to high evapa o > 0.67, e < 0.67, co
A>—067 A< —0.67

oration rates. They become partially saturated with
large voids. Application of typical foundation loads

on such soils causes only minor deformation as lon N
as the degree of saturation remains low. As soon as'tl gam consolidation test results. The methods for

soil becomes saturated, large deformations take plag}éaluating collapse ;usceptibility vary from sim_ple to
due to the reduction of volume and collapse of thd®rY complex. Considerable effort has been given to

intergranular structure. If water is readily available,GStainSh criteria for predicting the collapse potential

the subsequent volume change and deformation a?@d the (irmcaI(;/aIL_Jes_for se:j/enty_gfgfso:lx;hl'h?hmore
rapid and the phenomenon is referred to as collapsgoMONY Use criteria are described in - he

In general, collapse-susceptible soils can be identifidd© criteria most widePZ/ used in the US are the Gibb’s
by a dry density criterion. If the dry density of thecollapse parameted)*< and the percentage collapse

soil is sufficiently low to give a void space larger than(CP) as obtained from the double oedometer test

that required to hold the liquid limit water content,A third parameterd developed in Ref10 was also

then collapse upon saturation is likely. OtherwisénCIUded' The parameters are defined by

collapse generally occurs only when the soil is loaded. Ae, AH,
In some cases, collapse susceptible soils are also P 1+eo = Hy
found in residual soils. In general, these soils are Y 1
terrace sediments consisting of low density, organic- Y4~ Gy
rich silts, sands, clays of varying percentage and traces R= w

of gravels. Their approximate distribution varies. " (e0 — €1)Yw

Fig. 1 shows grain size distribution curves of typical
collapsing soil. However, regardless of the formation
process and grain size distribution, most collapsiblehere Ae. and AH. are changes in void ratio and
soils are geologically yourld. sample height, respectively, after saturation under a
The influence of clay fraction on collapse hagressure of 200 kPa, is the void ratio at liquid limit,
been studied (see Ref$4, 15). The studies show that and Hy, is the initial height of sample. Other related
collapse potential is negligible when the clay contenparameters are the initial dry unit weighty], initial
is greater than 30%. If the clay content is belowmoisture contentu), initial void ratio (g), initial
5%, a collapse settlement, which remains small, igorosity ), initial degree of saturations¢), and
likely to take place, whereas maximum collapse iplastic limit (PL).
reached at clay contents of about 15%. This result Specific cut-off values for collapse susceptibility
conforms to the interval established by Lawton éfal of each parameter for each collapse criterié ¢,
who indicated that maximum collapse potential for thed) and collapse-related parametets,(ey, 1o, So,
natural soils studied is obtained when the clay contefitl.) are given below. The critical values for param-
is in the range of 10-40%. etersR, C},, andny obtained are given iMable 1
Collapsing soils have been recognized througho@ther critical values were derived from a conventional
the world; particularly in Africa, part of Asia, Europe, volumetric-gravimetric relationship among the param-
as well as in the US. In the US the severity ofeters.
the problem has been observed for well over two For this study, field and laboratory test data were
decades in the Midwestern and Western US, whemllected from local consulting engineers’ offices and
soil deposits are generally either aeolian or alluvial. from the reports of previous researctersin all,
There are altogether about ten criteria for predictdata for 992 sample points were collected from 411
ing the collapsing potential of a soil. Some of thaifferent locations within the city of Tucson and its
criteria are empirical. Others are derived theoreticallgurroundings. The raw data were reduced to obtain

(1+ eo)woya’
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B [ 3l Table 2 Data sets used in the analysis.
© ISS’;’E??’ Py ’ Data set Range of depths (ft) N
—a— Wet Sieve

K /’; J 1 0-1 125
g " . B 2 1.1-2 286
g " i "= 3 2.1-3 254
P 7 4 3.1-4 100
s / 5 4.1-6 104

} Bt 6 6.1-40 123

* D EE N g W 7 0-40 219

Particle size (mm)

Fig. 1 Typical grain size distribution curve of collapsing REGRESSION ANALYSIS

soil.
For the purpose of obtaining general descriptive pa-

rameters, primary attention was given to univariate
data sets, i.e., numerical values obtained for a single
characteristic of a sample. Linear regression and
multiple linear regression analyses were used for all
data sets in order to investigate possible functional
relationships among the variables. Polynomial re-
Void ratio Ee“ gression analyses were conducted on each data set to
model the variation of the parameters with respect to
depth,d.

The functional relationship between the depen-
dent variablesy) and the independent variables) (
was found by the method of least squares. The
Fig. 2 Typical collapse potential test restilt goodness-of-fit or strength of this relationship was ex-

pressed in terms of percentage reduction of variance,
) ) ) o which is defined as 100 times the sum of the squares
parameters in two categories: established crit€r|a (¢ the computed values gfdivided by the sum of the
R, A) and collapse-related soil parameters, (wo, e, squares of the observed valuesjof
no, 50, andPL). _ _ Table 6 gives the results of the polynomial re-

The collapse paramete;y, is obtained from a yesgjon analyses for all data sets in terms of depth
pseudo-consolidation testand represents the volu- expressed in units of feet. The relationships apply for
metric strain the sample undergoes after it is saturat%(‘i_zpthS varying from 0.5 to 40 feet. Also included in
with water while under a pressure of 200 kPa as showfe aple isp-value used to test the null hypothesis
in Fig. 2 Some of the parameters listed previously arg5¢ the multiple correlation is zeroTable 7 gives
redundant since they can be calculated from a coffg regyits of a similar analysis for data set 7 which

bination of the others. However, the objective was t@ntains values for all collapse criteria and collapse
investigate the effect of each commonly used collapsea|ated soil parameters. The regression equations

related soil parameters on the collapse phenomenon,, ~ s, d, andwy given in Table 6and Table 7
p ’ ’

are different because of differences in the number of
data points in each of the data sets considered and
A total of 7 to 10 soil parameters were determined fodifferences in their dispersion tendencies. The results
each of the 992 sample points. Sample depths rangigdTable 6were derived from 992 data points, whereas
from the surface to about 12.2 nfable 2shows the those inTable 7were derived from 219 data points.
data sets for the range of depths considered and the A stepwise linear regression analysis was used to
total number of sample pointsV() for each set. Data express the collapse criteri@r}, as a function of the
sets 1-6 each contain 7 parametérable 3provides collapse related soil parameters. A summary of the
the descriptive statistics for each of the 6 parametergesults of this analysis is given ifable 8 In general,
Data set 7 contains the additional paramet®rs4, the analysis shows that the parametégsis strongly
and PL and the descriptive statistics of these areelated to the dry unit weightyq, and the natural
presented iffable 5 moisture contentwy. It is weakly related to natural

200kPa LogP

Summary statistics
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Table 3 Descriptive statistics for collapse parameters for the 7 data sets (DS). CoV given as a percentage.

Cp €o S0 Yd wo no
DS Mean SD CoV Mean SD CoV Mean SD CoV Mean SD CoV Mean SD CoV Mean SD CoV

1 6.7 7.06 1058 0.92 0.042 538 0.078 0.26 27.2 225 1121 49.7 942 1007 114 470 6.6 135
2 71 7.73 109.1 0.84 0.047 58.0 0.081 0.22 265 249 1129 454 98.0 9.6 98 450 6.4 141
3 52 590 1144 0.82 0052 650 0.080 0.25 30.3 251 1255 50.0 99.4 10.8 109 441 7.2 16.4
4 43 483 111.6 0.85 0.071 835 0.085 0.34 39.1 245 1294 527 985 105 106 447 7.7 17.3
5 36 406 111.8 0.78 0.049 68.1 0.072 0.23 30.2 234 1229 52.6 100.7 10.0 99 43.0 69 16.0
6 20 233 1170 0.79 0.083 96.5 0.086 0.34 424 263 1760 66.8 1025 11.7 114 425 8.6 20.3
7 57 6.01 1043 0.94 0.068 77.2 0.094 0.26 28.3 26.3 1387 527 948 10.7 113 475 6.8 143
Al 52 632 120.1 0.84 0.06 741 0.08 0.27 322 248 13.04 527 988 10.7 108 445 7.3 163
Table 4 Regression equation of CoV with depth. Table 7 Polynomial regression equations for data set Z(
Regression equation R? depth in feet).
CoV(Cy) = 107.11 + 1.433d 0.396 Regression equation F. p-value
CoV(eo) = 25.55 + 2.21d 0.336 (C, = 7.42 — 0.063d + 0.014d> 8.01 < 0.001
CoV(sp) = 48.56 + 0.00994* 0.825 PL = 0.26 — 0.05d 4.9 0.028
CoV(vya) = 10.5 + 0.02d 0.960 A =1.21 —0.16d + 0.005d> 4.3 0.015
CoV(wo) = 50.5 + 6.25d 0545 55 =21.8+1.14d 48.3 < 0.001
CoV(no) = 13.14 + 0.966d 0.624  ~4 =93.1+0.05d 11.0 0.001

wo = 0.077 4+ 0.0035d 25.7 < 0.001

Table 5 Descriptive statistics foR, A, andPL.

Table 8 Stepwise regression equations €.
Parameter Mean SD Skew; Skew,32 CoV N DS

Regression equation PVE
R 1.12 040  0.67 0.34 29.7 219 1 8.03 — 0.19550 + 5.06d 10.8
A 079 181 -175 12.0 28.6 219 g 54.59 —3?%94 o 0-4387519— 87.8wo ggg
41 — 0.29v4 — 39.29wo .

PL 027 007 113 124 256 219 4 29.8 — 0.02650 — 0.2274 — 29.26wo 24.6

5 73.22 — 0.05v4 — 17.1eg 32.5

6 —19.14 + 0.125v4 — 47.23wo + 13.4e0 + 0.072s9 27.2
void ratio, ey, porosity,ng, degree of saturatiorsg, PVE = % variation explained

and the depth¢d. As has been mentioned previously,
the importance of a variable may increase or decreaggyrrelation coefficient matrix
when it is taken in combination with other variables,

Moreover, a linear regression model is not the onl

model that can be used to explain the data set adlg:[errelationships among all the variables, were com-
quately puted for each of the data seXs; considered in this

Table 9contains the results of a similar analysisStudy- Table 10 which applies to data set 7, illustrates

for R, C,,, andA (data set 7). The collapse parametef'hese matrices. The correlation coefficient matrix and
Ris ,relgied most strongly tel, PL, andd as seen deviation matrix for a given data set are obtained from

he correlation coefficient matrices, which show the

in Step 5. The parametér,, as seen in Step 3, is Zi = (Xij — X;)/ X5,
strongly related tosg, A, andd. The parameter, T
on the other hand, is related most parameters and is R = (1/n)Z°Z,

strongly related ta?, PL, anduwy. whereZ is the deviation matrixR is the correlation

matrix, andn is the number of observations in the data
Table 6 Polynomial regression equations for all data set§et' . . . .
(d = depth in feet). S_mce the co_rrglatlon coeff|C|e_nt is a measure of
the linear association among variables, or how well
one variable predicts another variable, it is an ex-
Cp = 7.89 — 1.035d + 0-04881122— 0.00067d* 23.7 <0.001  gmple of simple linear regression. The value of the
Z%::%g%; _O'gigzd : 0(.)(')983151626!— 0.00002d4 g:g f'&&lﬁ correlation coefficient ranges betvyegri gnd +1.
s0 = 24.05 + 0.0184> 23.6 <0.001 If the value of the correlation coefficient is zero, no
Y4 = 95.33 +1.39d — 0.0764* +0.0014d> ~ 13.3 <0.001  gyccess in prediction is indicated. Perfect prediction
wp = 0.078 + 0.000064° 144 <0001 5 indicated by either+1 or —1. Based on the

Regression equation F. p-value

www.scienceasia.org


http://www.scienceasia.org/2009.html
www.scienceasia.org

376 ScienceAsi&5 (2009)

Table 9 Stepwise regression equations #rC, and A.

Parameter Regression equatien {n pcf) % variation explained
R R =2.27 — 0.0005A — 0.00974 — 3.51PL — 0.9¢g — 1.5wo 93.9
Cp Cp =3.94 —0.138s0 + 0.437A — 0.109d 16.0
A A= —-6.77—-0.31R + 0.02C}, + 0.065s0 — 22.96wo + 0.25n9 — 14.7PL 69.3

Table 10 Correlation coefficient matrix for data set 7.

d R Cp €o A no S0 PL Yd wo
d 1.00 -0.24 -0.22 —0.06 -0.16 —0.08 0.43 0.15 0.22 0.33
R -0.24 1.00 0.36 0.63 0.77 0.64 -0.43 -0.62 -0.75 -0.10
Cp —-0.22 0.36 1.00 0.27 0.38 0.31 -0.31 -0.14 —0.40 -0.17
€o —0.06 0.63 0.27 1.00 0.52 0.98 -0.01 0.10 -0.91 0.47
A —-0.16 0.77 0.38 0.52 1.00 0.55 -0.25 —0.52 -0.62 -0.04
no —0.08 0.64 0.31 0.98 0.55 1.00 -0.02 0.09 —0.93 0.45
S0 0.43 -0.43 -0.31 -0.01 -0.25 -0.02 1.00 0.27 0.37 0.83
PL 0.15 —0.62 —-0.14 0.10 —0.52 —0.09 0.27 1.00 0.02 0.30
Yd 0.22 —-0.75 —0.40 -0.91 —0.62 —0.93 0.37 0.02 1.00 -0.11
wo 0.33 -0.10 -0.17 0.47 —0.04 0.45 0.83 0.30 -0.11 1.00

information provided by the correlation matrices andunctions of PL, the high correlation is justified and
the results of several regression analyses for each datgpected. A comparison of the regression equations
set, the following conclusions are made. for R presented inTable 9 with the values of the
No significant correlation was observed betweenoefficient of determination/{?) for R presented in
depth and the other parameters for data sets 1-5 sintable 10verifies this observation. The comparison
values of the correlation coefficients were close talso shows thai, has only a small effect on explain-
zero for these cases. This is to be expected becalisg variations when it is included in the regression
for each of these data sets the depth increment éguation. One possible explanation is that when two
small (1.0 or 2.0 feet) as shown ifable2 The or more variables are considered together, their effect
lack of correlation betweerd|, and depth and the onathird parameteris markedly different than if either
other parameters is also clear frdrable 7where the of the two variables is considered alone. Moreover,
parameter does not appear in the regression equatiowhen there is an extreme value for any one of the
for data sets 2-5. For data set 7, the depth varigmrameters, an unusual value in the deviation matrix
from 6.0 to 40.0 feet. The first row dfable 10gives may occur. This can result in a erroneously very low
values of the correlation coefficient sufficiently greateor high coefficient in the matrix.
or less than zero to indicate a stronger correlation of The parameted was found to be moderately to
d with other parameters than was obtained for any aftrongly correlated td& (0.77), C,, (0.33), ng (0.55),
the other data sets. This conclusion is also supporteg (0.52), sy (—0.25), PL (—0.52), andvq (—0.62).
by the regression equation obtained €&y from data The parameteyy apparently did not enter into the
set 7 as presented Trable 7 regression equation. It is often difficult to select
The paramete€’, has a moderate negative correthe one or two strongest variables for a regression
lation with v4 (—0.40) andwg (—0.17), as was also analysis on the basis of the correlation matrices or vice
seen by the use of regression analysis. versa, since the importance of a given variable may
The natural void ratiogy, exhibits a strong nega- change when it is entered into the regression analysis
tive correlation withyy (—0.91) and a strong positive in combination with other variables.
correlation withng (0.98).
The degree of saturatiofy has a strong positive FACTOR ANALYSIS
correlation withwy (0.83) and a moderate negative The various statistical techniques described in the
correlation withCl, (—0.31) as expected. previous section provide for rapid data evaluation,
As shown inTable 1Q the Gibbs collapse param- determination of statistical significance, evaluation of
eter R has strong correlation witk, (0.63), A (0.77), parameters, and the fitting of linear models. However,
PL (—0.62) and~4 (—0.75). Since bothk and A are neither the predictor equations nor the correlation
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coefficients provide a complete characterization of the  With the availability of SPSS and other similar
variability in collapse properties. For this reason, @rograms, lengthy routine calculations can be short-
higher order statistical technique called factor analysisned considerably. This is particularly important
was applied to each of the seven data sets. Factohen a large matrix is to be inverted or when the
analysis® is a powerful multivariate analytical tool solutions of the characteristic equations used in factor
which is used to reduce a large number of variables tnalysis need to be obtained.
a relatively small numbers of factors. The techniqueis The factor model used here is based on the least
useful in screening large data sets and helpful in fosquares method of the forfy = a;1 f1+- - -+ aim fin,
mulating a hypothesis for an observed phenomenonwhereq;; are factor coefficients (loadings) u;;v/A;
The mathematical theory for the developmen{i=1...,m;j=1,2,3,...,m)asshowninl).
of factor analysis is described in Ref7. Several
factor solutions have been developed and procedurQéSCUSSlON
by which the factor coefficients are computed havE&actor analysis was applied to all seven data sets for
been presented. The most general and widely usedllapse and collapse-related soil parameters. The
procedure is the principal-factor solutibhwhich is  analysis was also applied to a data set consisting of
also known as the ‘method of axes’. In this methodall the data. The results are presented in the form of
the first axis in an ellipsoid is selected so that the sumotated factor matrices iffable 11 In grouping the
of the squares of the distances of points from the aximriables with a given factor, factor loadings less than
is minimized. Successive axes, each orthogonal to ti@e3 were arbitrarily considered to be zero and were
preceding ones, are chosen in order to minimize theported in order to facilitate reading. An explanation
squares of the distances of the points from the neuwf the significance of the factors for each of the data
axis. As a result of this process, the factor loadingset follows.
which are the correlations between the factors and the Data set 1: Variables for 125 observations were
variables on each successive axis, become smaller aatalysed. The results in the form of a rotated factor
smaller until the number of factors reaches the rank ghatrix are shown inTable 11 Four factors were
the correlation matrix satisfactorily. extracted, but only two are reported. The first two
The factor analysis presented here is based dactors accounted for 76% of the total variance. The
principal components. Principal component analysitwvo factors extracted for the various parameters were
transforms a given set of variables into a new set af: Cj,, e, no, va, wo and Fy: Cyp, So, Yd, Wo.
variables which are either orthogonal or uncorrelatedractor 1 is seen to depend on the unit weight and
There is an essential difference between principaither natural properties of the soil deposit. For each
component analysis and factor analysis. In factor andiactor the variables associated with the factor are quite
ysis, a variable is influenced by certain determinantstrong with respect to that factor and negligible for
some of which are shared by other variables whilether factors. The inverse relationship betwegn
others are not shared by any other variable. The maf{r-) and ey (+) is confirmation of the relationship
purpose of factor analysis is to define a minimumyy = Gy /(1 + eg). Factor 2 mainly depends on
number of hypothetical variables or factors with whichsy. The C|, value was found to depend moderately
the correlation can be re-analysed. on the degree of saturation in regression analysis. A
In factor analysis, the data matr% which is an strong correlation with water content is justified, i.e.,
n X m matrix containing the values oh measure- Se = wGs.
ments onn objects, is used to fineh new measure- Data set 2: For this data set, the same variables
ments with zero as mean and identity matdx,as were considered as for data set 1 and 286 observations
variance. These measurements, called factors, are linere analysed. As shown ifable 11 the first two
ear functions of scores. With the new measurementsfactors account for about 76% of the total variance.
the correlation matrix is recalculated and re-analysed'he two factors are quite similar to those derived for
The 2 scores expressed as a linear function oflata set 1 except fat',, which did not come out as

factors are a strong a factor as was previously obtained for data
set 1.
Zi = filUn VM + foUis Ve + -+ fuUim v/ A, Data set 3: Four factors were extracted and only
(1) two are reported iMable 11 The C, value is found
wherei = 1,...,m. The correlation coefficient of, to have a strong negative correlation with the degree
with f,, is given by = U+/X and is known as the of saturations, within Factor 1. This unusual rela-
loading. tionship is probably due to an extreme value in the
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Table 11 Rotated Factor Matrices of all Data Sets.

Variables DS-1 DS-2 DS-3 DS-4 DS-5 DS-6 DS-7 All
F1 F> I3 P F1 F> F P F1 > F1 I F1 > I3 P
d - - - - - 0.227 - —0.40 - - - 0.73 - 0.464 - 0.40
Cp 0.580 - - - 0362 - 0.32-0.75 052 -049 037 - 0.512 - 0.41-0.62
) 0.994 0.516 0.987 0.738 0.986 - 0.97 - 0.97 - 0.97 0.75 0.847 - 0.98
no 0997 - 0983 - 0989 - 0.98 - 0.98 - 097 - 0.863 0.472 0.99 -
S0 - - 0268 - - 0918 052 0.76-041 088 054 - -038 0.779 0.29 0.88
Yd - 0963 - 0898 - 0.373-0.88 0.37 —0.88 0.41 —0.83 0.70 —0.94 - —090 031
wo 0.941 0.291 0.887 0.443 0.905 0.707 086 044 073 066 0.84 0.46 - 0931 0.70 0.68
R 0.892 -
A 0976 -
PL —0.31 0.55
EV 3.299 2.000 3.404 2.089 3.408 1.994 3.299 1.633 3.667 1.664 3.716 1.72 4.362 2.600 3.493 1.920

CPTV 471 757 486 785 487 772 471 778 524 762 531 772 436 696 499 774

EV = eigenvalue; CPTV = cumulative percentage of total variance; DS = data set

deviation matrix. Table 11 Four factors were extracted accounting for

Data set 4. As shown iffable 11 three factors 98.7% of total variance, but only two are presented. It
accounted for 91.2% of the total variance, but onlys seen that the strongest factor in the factor analysis
two are presented. This is essentially the same as fof all the collapse-related soil parameter dataFis
data set 2, except that a weak loadingldscombined since it accounts for almost 50% of the variability. It
with Factor 2. appears most strongly relatedd¢g and~4, therefore

Data set 5. As shown iTable 11two factors it can be considered as the “unit weight factor”. The
accounted for 78% of the total variance. The factosecond strongest factor appears to Be since it
loadings and variables are similar to those of dataccounts for an additional 27.5% of the variance. It
set 1. is most strongly related tey can therefore be called

Data set 6: As shown iffable 11 two factors the “degree of saturation factor”. The third factor ac-
accounted for 77% of the total variance. Factor 1 isounted for an additional 13% of the variance and was
the same as was found in all the other sets. Factsolely related to depth. The fourth factor accounted
2 appears here as a combination of the other factorfer an additional 8% variance and was related’{p
Data sets 3, 4, 5, and 6 have the same seven variables Table 12presents a semi-quantitative summary of
and 254, 100, 104, and 123 observations respectivethe results of the factor analysis. It is observed that
From the rotated factor matrices of these sets, as givéme cumulative proportion of total variance among
in Table 11 it is observed that the factors extracted fothe eight sets of data is fairly uniform. There is
each data set are virtually the same. This suggests thittle difference between the proportions of variance
all of the collapse-related soil parameters are from thextracted from ten variables versus the proportion of
same population. variance extracted from seven variables.

Data set 7: A separate analysis was done with In order to obtain meaningful associations from
the three collapse criteria and seven collapse-relatadfactor analysis in this case, two conditions are
soil parameters, i.e. ten variables altogether for 21&quired. The first is that the number of variables that
observations. Five factors were found to account facharacterize the collapse susceptibility should be the
about 96% of the total variance, but only two aresame for all strata analysed. The second is that the
shown inTable 11 The factors extracted werd?;:  sample source from different locations and different
R, Cp, eo, A, no, va; Fai d, eo, no, s0, PL, wo;  depths should be identical. In other words, the deposit
Fs: d, A; Fy: d, Cy; Fs: d, C,. Factor 1 is clearly should be homogeneous.

a factor of collapse criteriadd and R. The strong In this analysis the most stable factors appear to
negative correlation withy was expected from their be unit weight §;) and degree of saturationfy)
theoretical relationships. Factor 2 is determined bfactors. The introduction of unique factors such as
water contentyw,, which includesPL ands,. Factor C, andd into the analysis reflects the independent
3 is determined byL. Factors 4 and 5 are the samecharacter of these quantities and does not influence the
as for other data sets. deduced variables significantly. The paramefeend

All data sets: An additional run was made for allA may be strong factors as obtained from data set 7,
data sets with seven variables for 992 observationsut this cannot be investigated fully since they were
The resulting rotated factor matrix is presented imot included as part of the other data sets due to the
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Table 12 Summary of factor analysis.

Data Sets N No. of Variables Fy Fy F3 Fy Fy Cum % of Total variance

1 125 7 Ya S0 d C, - 99.4

2 286 7 Yd S0 d - - 92.3

3 254 7 Yd S0 d Cp - 99.2

4 100 7 Ya S0 d - - 91.2

5 104 7 Yd So d Cp - 99.2

6 123 7 Yd d Cp - - 89.0

7 219 10 Yd» R, A So PL Cp d 962

All 992 7 Yd S0 d Cp 98.7
unavailability of sufficient data at most depths. depth using a polynomial model in order to take

Factor analysis was used in this study as a suponlinearity within the profile into account. As in-
plement to multiple regression analysis. In regressiotgicated inTable 5 higher-order terms made a very
analysis, the significance of the regression and corrasignificant contribution to the variation and can be
lations can be tested. In factor analysis, there is rignored. (4) The results of a stepwise linear regression
significance test for factor loadings. However, factoanalysis of collapse parametég presented ifable 8
analysis provides more insight into the understandingeveal it to be significantly correlated withy and
of theoretical concepts and procedures than does thg. The results of a similar analysis performed on
multiple regression analysis. In some cases, howevéne Gibbs ParametaR contained inTable 9show a
rotation in factor analysis may yield meaninglesstrong correlation between it at] L, v4. (5) Factor
factors'®. The factor analysis was performed by usingnalysis enabled the number of variables to be reduced
the fact thatyqy and s were the parameters mostto two independent parameterg, and sy, that were
closely related to the two strongest factors. In thigound to describe approximately 80% of the variation
regard, factor analysis proved to be a sophisticatezhcountered in the data. This suggests that a good
data reduction technique that confirmed the results ektimate of the variation of collapse susceptibility can
more conventional statistical analysis. be obtained from the two collapse-related soil param-

eters, dry unit weight;y, and degree of saturation,
CONCLUSIONS sg. It also validates the earlier findings revealed by
Values of selected collapse criteria and collapseegression analysis. (6) The database created with col-
related soil parameters obtained from tests performdapse and collapse-related soil parameters can be used
on about 1000 samples obtained from over 400 boréar information regarding the severity of collapsing
hole locations throughout the Tucson Basin were angbroblems in a particular location of the city, and for
ysed statistically to determine the nature and exteffirther analysis.
of their variability both spatially and with depth. The
results of those analyses lead to the following observacknowledgements The authors wish to acknowledge
tions and conclusions with respect to variability withwestern Technologies, Inc., Tucson, Arizona for allowing
depth. the author access to their job files to obtain data for this study
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