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ABSTRACT : Kruglov has recently given a strong law of large numbers for identically distributed random variables with
infinite means. He improved the work of Feller by assuming only pairwise independence of random variables. In this note
we relax the condition from pairwise independence to pairwise negative quadrant dependence.
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INTRODUCTION

Let (Xn) be a sequence of identically distributed
random variables. We shall say that(Xn) obeys the
strong law of large numbers (SLLN) with respect to a
sequence of positive numbers(an) if

Sn

an

a.s.−→ µ as n →∞,

i.e.,

P

(
lim

n→∞

Sn

an
= µ

)
= 1

whereSn = X1 + X2 + · · · + Xn and E[X1] =
E[X2] = · · · = µ < ∞. Note that a.s. stands
for ‘almost surely’. This concept is analogous to the
concept of ‘almost everywhere’ in measure theory.

In the case that theXn are independent identically
distributed random variables withE[|Xi|] < ∞, many
authors have given the conditions that make the(Xn)
satisfy the SLLN.

If µ = 0, the law becomes

Sn

an

a.s.−→ 0 as n →∞.

Chung (see p. 73 of Ref.1) shows that

Sn

an

a.s.−→ 0 if and only if P

(
|Sn

an
| > ε i.o.

)
= 0

for all ε > 0, whereA = An i.o. (i.o. = infinitely
often), means that the eventAn happens for infinitely

many values ofn. Formally,

A = lim sup
n→∞

An =
∞⋂

k=1

∞⋃
n=k

An.

Hence, one can say that(Xn) satisfies the SLLN with
respect to(an) if

Sn

an

a.s.−→ 0 as n →∞ or P

(∣∣∣∣Sn

an

∣∣∣∣ > ε i.o.

)
= 0

for all ε > 0. This definition is better than the previous
one because we do not need the existence of the means
of Xi. In this note, we will consider the case of infinite
means.

Theorem 1 (Feller2) Assume that

(a) an > 0 and(an/n) is an increasing sequence,

(b-1) Xn are independent identically distributed ran-
dom variables andE[|X1|] = ∞.

Then

(i) P (|Sn| > an i.o.) = 0 if and only if∑∞
n=1 P (|Xn| > an) converges,

(ii) P (|Sn| > an i.o.) = 1 if and only if∑∞
n=1 P (|Xn| > an) diverges.

Kruglov3 improved the work of Feller by assuming
only the pairwise independence of theXn.

Theorem 2 (Kruglov3) Assume that(a) holds and
that

www.scienceasia.org

http://dx.doi.org/10.2306/scienceasia1513-1874.2009.35.290
http://www.scienceasia.org/2009.html
mailto:nattakarn.c@chula.ac.th
www.scienceasia.org


ScienceAsia35 (2009) 291

(b-2) Xn are pairwise independent identically dis-
tributed random variables andE[X−

1 ] < ∞,
E[X+

1 ] = ∞.

Then

(i) (|Xn|) obeys the SLLN w.r.t.(an) if and only if∑∞
n=1 P (Xn > an) < ∞,

(ii) P (Sn > an i.o.) = 1 if and only if∑∞
n=1 P (Xn > an) = ∞.

In this note, we relax the condition from pairwise
independence to pairwise negative quadrant depen-
dence (NQD). A sequence of random variables(Xn)
is said to bepairwise negative quadrant dependentif

P (Xi 6 xi, Xj 6 xj) 6 P (Xi 6 xi)P (Xj 6 xj)

for all xi, yj ∈ R and for alli, j > 1 andi 6= j. This
concept of dependence was introduced in Refs.4–6.

Remark 1 Many authors7–9 have given a sequence of
pairwise independent random variables which are not
mutually independent. Examples of pairwise NQD
random variables which are not pairwise independent
can be found in Ref.4.

Theorem 3andTheorem 4are our results.

Theorem 3 Assume thatlimn→∞ an/n = ∞ and

(b-3) Xn are pairwise NQD identically distributed
random variables andE[X−

1 ] < ∞, E[X+
1 ] =

∞.

Then(Xn) obeys the SLLN w.r.t.(an) if and only if
(|Xn|) obeys the SLLN w.r.t.(an).

Theorem 4 Assume that(a)and(b-3)hold. Then

(i) (|Xn|) obeys the SLLN w.r.t.(an) if and only if∑∞
n=1 P (Xn > an) < ∞

(ii) P (Sn > ani.o.) = 1 if and only if∑∞
n=1 P (Xn > an) = ∞.

SLLN OF NQD-RANDOM VARIABLES WITH
FINITE MEANS

To prove our results, we apply the result of the SLLN
of NQD-random variables in the case of finite means
together with the argument of Kruglov3.

Proposition 1 (Ebrahimi and Ghosh10) Let (Xn)
be an NQD sequence. Then the following results are
true.

(i) (fn(Xn)) is an NQD sequence for any sequence
of monotonically increasing functions(fn).

(ii) (fn(Xn)) is an NQD sequence for any sequence
of monotonically decreasing functions(fn).

(iii) (X+
n ) and(X−

n ) are NQD sequences.

(iv) Cov(Xi, Xj) 6 0 for all i 6= j.

Theorem 5 (Matula11) Let (Ω, F, P ) be a probabil-
ity space and(An) a sequence of events.

(i) If
∑∞

n=1 P (An) < ∞, thenP (An i.o.) = 0.

(ii) If
∑∞

n=1 P (An) = ∞ and P (Ak ∩ Am) 6
P (Ak)P (Am) for k 6= m, thenP (An i.o.) = 1.

To proveTheorem 4, we need the SLLN for NQD
random variables in the case of finite variances.

Theorem 6 Let (Xn) be a sequence of NQD and not
necessary identically distributed random variables
andE[X2

n] < ∞ for all n ∈ N. If

(i) supn∈N
1
n

∑n
k=1 E

[∣∣∣Xk − E[Xk]
∣∣∣] < ∞,

(ii)
∑∞

n=1
Var[Xn]

n2 < ∞,

then

lim
n→∞

1
n

n∑
k=1

(Xk − E[Xk]) = 0 a.s.

Proof: To prove the theorem, we follow the proof
of Theorem 1 of Ref.12. They used the pairwise
independence only to show that

Var[
n∑

k=1

Xk] =
n∑

k=1

Var[Xk].

In fact, in their proof, they need only the fact that

Var[
n∑

k=1

Xk] 6
n∑

k=1

Var[Xk]. (1)

Similarly, (1) holds by using the NQD-property which
follows fromProposition 1(iv). �

Corollary 1 Let (Xn) be an NQD sequence and not
necessary identically distributed random variables. If
E[X2

n] < ∞ for all n ∈ N and

(i) supn∈N E[|Xn|] < ∞ and

(ii)
∑∞

n=1
Var[Xn]

n2 < ∞,
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then

lim
n→∞

1
n

n∑
k=1

(Xk − E[Xk]) = 0 a.s.

Proof: It follows from Theorem 6and the fact that

sup
n∈N

1
n

n∑
k=1

E
[∣∣∣Xk − [EXk]

∣∣∣] 6 2 sup
n∈N

E[|Xn|].

�

Corollary 2 Let (Xn) be a sequence of NQD iden-
tically distributed random variables withE[|X1|] <
∞. Then

lim
n→∞

1
n

n∑
k=1

(Xk − E[Xk]) = 0 a.s.

Proof: UseCorollary 1and the fact that
∞∑

n=1

Var[Xn]
n2

6
∞∑

n=1

E[X2
1 ]

n2
< ∞.

�
Observe thatCorollary 1andCorollary 2are the main
results of Azarnoosh13.

PROOF OF MAIN RESULTS

Proof ofTheorem 3: It is obvious that if(|Xn|) obeys
the SLLN w.r.t.(an), then(Xn) obeys the SLLN w.r.t.
(an) too. Then we assume that(Xn) obeys the SLLN
w.r.t. (an). First we will show that

lim
n→∞

1
an

n∑
k=1

X−
k = 0 a.s. (2)

for all (an) such that

lim
n→∞

an

n
= ∞.

We note that if(Xn) is a sequence of identically
distributed random variables, then(X+

n ) and (X−
n )

are also. Since theX−
i are pairwise NQD and

E[X−
1 ] = E[X−

2 ] = · · · < ∞, by Corollary 2,

lim
n→∞

1
n

n∑
k=1

X−
k = E[X−

1 ] a.s.

Hence,

lim
n→∞

1
an

n∑
k=1

X−
k = lim

n→∞

( n

an
· 1
n

n∑
k=1

X−
k

)
=
(

lim
n→∞

n

an

)(
lim

n→∞

1
an

n∑
k=1

X−
k

)
= 0 a.s.

We have that

lim
n→∞

1
an

n∑
k=1

Xk = 0 a.s.

and

lim
n→∞

1
an

n∑
k=1

X−
k = 0 a.s.

implies that

lim
n→∞

1
an

n∑
k=1

X+
k = 0 a.s.

Hence

lim
n→∞

1
an

n∑
k=1

|Xk|=lim
n→∞

1
an

n∑
k=1

(X−
k + X+

k ) = 0 a.s.

This completes the proof. �
Proof ofTheorem 4: (i) Assume that(|Xn|) obeys the
SLLN w.r.t. (an). Since

P

(
lim

n→∞

1
an

n∑
k=1

|Xk| = 0

)
= 1,

by the result on p. 73 of Ref.1, P (|X1|+· · ·+|Xn| >
an i.o.) = 0. This implies thatP (|Xn| > an i.o.) =
0. Suppose that

∞∑
n=1

P (Xn > an) = ∞

and letAn = {Xn > an}. Then byTheorem 5(ii) ,
P (Xn > an i.o.) = 1 which implies thatP (|Xn| >
an i.o.) = 1. This is a contradiction. Hence,∑∞

n=1 P (Xn > an) < ∞. On the other hand, we
assume that

∑∞
n=1 P (Xn > an) < ∞. This implies

lim
n→∞

an

n
= ∞

by the result on p. 891 of Ref.3. This with (a) and
E[X−

1 ] < ∞ implies

lim
n→∞

1
an

n∑
k=1

X−
k = 0 a.s.

In order to prove that(|Xn|) obeys the SLLN w.r.t.
(an), it suffices to show that

lim
n→∞

1
an

n∑
k=1

X+
k = 0 a.s. (3)
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To do this, let

Yn =
n

an
X+

n I(X+
n 6 2an), Zn = 2nI(X+

n > 2an)

andWn = Yn + Zn, whereI is the indicator function.
Kruglov3 showed that

∞∑
n=1

Var[Yn]
n2

< ∞, (4)

sup
n∈N

1
n

n∑
k=1

E
[∣∣∣Yk − E[Yk]

∣∣∣] < ∞, (5)

and that if

lim
n→∞

1
n

n∑
k=1

(Yk − E[Yk]) = 0 a.s., (6)

then (3) holds. Let

fn(t) =
n

an

(
tI(t 6 2an) + 2anI(t > 2an)

)
and

gn(t) = 2nI(t > 2an).

Observe thatfn and gn are increasing functions,
Wn = fn(X+

n ) and Zn = gn(X+
n ). Hence, by

Proposition 1(i), we have that(Wn) and (Zn) are
sequences of pairwise NQD random variables. Next
we will show that

1
n

n∑
k=1

(Yk − E[Yk]) +
1
n

n∑
k=1

(Zk − E[Zk])

=
1
n

n∑
k=1

(Wk − E[Wk]) a.s.−→ 0. (7)

By Theorem 6, we need to prove

sup
n∈N

1
n

n∑
k=1

E
[∣∣∣Wk − E[Wk]

∣∣∣]
6 sup

n∈N

1
n

n∑
k=1

E
[∣∣∣Yk − E[Yk]

∣∣∣]
+ sup

n∈N

1
n

n∑
k=1

E
[∣∣∣Zk − E[Zk]

∣∣∣]
< ∞, (8)

and
∞∑

n=1

Var[Wn]
n2

< ∞. (9)

To prove (8), we note that

sup
n∈N

1
n

n∑
k=1

E
[∣∣∣Zk − E[Zk]

∣∣∣]
6 2 sup

n∈N

1
n

n∑
k=1

E[Zk]

= 4 sup
n∈N

1
n

n∑
k=1

kP (X+
k > 2ak)

6 4 sup
n∈N

n∑
k=1

P (X+
k > ak)

= 4
∞∑

k=1

P (X+
k > ak)

= 4
∞∑

k=1

P (Xk > ak)

< ∞. (10)

From (5) and (10), we have (8).
To prove (9), we note from the factYnZn = 0 for

all n ∈ N that

Var[Wn] = Var[Yn + Zn]
= Var[Yn] + Var[Zn] + 2 Cov(Yn, Zn)
= Var[Yn] + Var[Zn]− 2E[Yn]E[Zn]
6 Var[Yn] + Var[Zn].

Hence, by (4) and the fact that

∞∑
n=1

Var[Zn]
n2

6
∞∑

n=1

E[Z2
n]

n2
= 4

∞∑
n=1

P (X+
n > 2an) < ∞,

(11)
we have
∞∑

n=1

Var[Wn]
n2

6
∞∑

n=1

Var[Yn]
n2

+
∞∑

n=1

Var[Zn]
n2

< ∞.

Hence, (9) holds.
From (10) and (11), by Theorem 6,

lim
n→∞

1
n

n∑
k=1

(Zk − E[Zk]) = 0 a.s. (12)

From (7) and (12),

lim
n→∞

1
n

n∑
k=1

(Yk − E[Yk]) = 0 a.s.

Hence, by Kruglov’s result that if (6) then (3) holds,

lim
n→∞

1
an

n∑
k=1

X+
k = 0 a.s.
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(ii) The “pairwise independence” condition was
needed in two places in the proof of Kruglov3. These
were in the proof thatP (An i.o.) = 1, and when
applying Etemadi theorem14. In our proof, which
closely follows that of Kruglov, we need to avoid us-
ing this condition. In the first place, we instead apply
Theorem 5(ii) by settingAn = {w|Xn(w) > an}.
SinceXn’s are NQD,P (Ak ∩Am) 6 P (Ak)P (Am)
for all k 6= m. Then P (An i.o.) = 1. In the
second place, we avoid applying the Etemadi theorem
by usingCorollary 2. Then we follow the proof of
Theorem 2(ii) and the theorem is proved. �
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