On the strong law of large numbers for pairwise negative quadrant dependent identically distributed random variables with infinite means

Nattakarn Chaidee ${ }^{\text {a,b,* }}$, Kritsana Neammanee ${ }^{\mathrm{a}}$
${ }^{\text {a }}$ Department of Mathematics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
${ }^{\text {b }}$ Centre of Excellence in Mathematics, Commission on Higher Education, 328 Sri Ayutthaya Road, Bangkok 10400, Thailand

*Corresponding author, e-mail: nattakarn.c@chula.ac.th
Received 6 Feb 2009
Accepted 28 Jul 2009

Abstract

Kruglov has recently given a strong law of large numbers for identically distributed random variables with infinite means. He improved the work of Feller by assuming only pairwise independence of random variables. In this note we relax the condition from pairwise independence to pairwise negative quadrant dependence.

KEYWORDS: pairwise independence

INTRODUCTION

Let $\left(X_{n}\right)$ be a sequence of identically distributed random variables. We shall say that $\left(X_{n}\right)$ obeys the strong law of large numbers (SLLN) with respect to a sequence of positive numbers $\left(a_{n}\right)$ if

$$
\frac{S_{n}}{a_{n}} \xrightarrow{\text { a.s. }} \mu \text { as } n \rightarrow \infty
$$

i.e.,

$$
P\left(\lim _{n \rightarrow \infty} \frac{S_{n}}{a_{n}}=\mu\right)=1
$$

where $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$ and $E\left[X_{1}\right]=$ $E\left[X_{2}\right]=\cdots=\mu<\infty$. Note that a.s. stands for 'almost surely'. This concept is analogous to the concept of 'almost everywhere' in measure theory.

In the case that the X_{n} are independent identically distributed random variables with $E\left[\left|X_{i}\right|\right]<\infty$, many authors have given the conditions that make the $\left(X_{n}\right)$ satisfy the SLLN.

If $\mu=0$, the law becomes

$$
\frac{S_{n}}{a_{n}} \xrightarrow{\text { a.s. }} 0 \text { as } n \rightarrow \infty .
$$

Chung (see p. 73 of Ref. 1) shows that

$$
\frac{S_{n}}{a_{n}} \xrightarrow{\text { a.s. }} 0 \text { if and only if } P\left(\left|\frac{S_{n}}{a_{n}}\right| \geqslant \epsilon \text { i.o. }\right)=0
$$

for all $\epsilon>0$, where $A=A_{n}$ i.o. (i.o. $=$ infinitely often), means that the event A_{n} happens for infinitely
many values of n. Formally,

$$
A=\limsup _{n \rightarrow \infty} A_{n}=\bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_{n}
$$

Hence, one can say that $\left(X_{n}\right)$ satisfies the SLLN with respect to $\left(a_{n}\right)$ if

$$
\frac{S_{n}}{a_{n}} \xrightarrow{\text { a.s. }} 0 \text { as } n \rightarrow \infty \text { or } P\left(\left|\frac{S_{n}}{a_{n}}\right| \geqslant \epsilon \text { i.o. }\right)=0
$$

for all $\epsilon>0$. This definition is better than the previous one because we do not need the existence of the means of X_{i}. In this note, we will consider the case of infinite means.

Theorem 1 (Feller ${ }^{2}$) Assume that
(a) $a_{n}>0$ and $\left(a_{n} / n\right)$ is an increasing sequence,
(b-1) X_{n} are independent identically distributed random variables and $E\left[\left|X_{1}\right|\right]=\infty$.

Then
(i) $P\left(\left|S_{n}\right|>a_{n}\right.$ i.o. $)=0$ if and only if $\sum_{n=1}^{\infty} P\left(\left|X_{n}\right|>a_{n}\right)$ converges,
(ii) $P\left(\left|S_{n}\right|>a_{n}\right.$ i.o.) $=1$ if and only if $\sum_{n=1}^{\infty} P\left(\left|X_{n}\right|>a_{n}\right)$ diverges.
Kruglov ${ }^{3}$ improved the work of Feller by assuming only the pairwise independence of the X_{n}.

Theorem 2 (Kruglov ${ }^{3}$) Assume that (a) holds and that
(b-2) X_{n} are pairwise independent identically distributed random variables and $E\left[X_{1}^{-}\right]<\infty$, $E\left[X_{1}^{+}\right]=\infty$.

Then
(i) $\left(\left|X_{n}\right|\right)$ obeys the SLLN w.r.t. $\left(a_{n}\right)$ if and only if $\sum_{n=1}^{\infty} P\left(X_{n}>a_{n}\right)<\infty$,
(ii) $P\left(S_{n}>a_{n}\right.$ i.o. $)=1$ if and only if $\sum_{n=1}^{\infty} P\left(X_{n}>a_{n}\right)=\infty$.

In this note, we relax the condition from pairwise independence to pairwise negative quadrant dependence (NQD). A sequence of random variables $\left(X_{n}\right)$ is said to be pairwise negative quadrant dependent if

$$
P\left(X_{i} \leqslant x_{i}, X_{j} \leqslant x_{j}\right) \leqslant P\left(X_{i} \leqslant x_{i}\right) P\left(X_{j} \leqslant x_{j}\right)
$$

for all $x_{i}, y_{j} \in \mathbb{R}$ and for all $i, j \geqslant 1$ and $i \neq j$. This concept of dependence was introduced in Refs. 4-6.

Remark 1 Many authors ${ }^{7-9}$ have given a sequence of pairwise independent random variables which are not mutually independent. Examples of pairwise NQD random variables which are not pairwise independent can be found in Ref. 4.

Theorem 3 and Theorem 4 are our results.
Theorem 3 Assume that $\lim _{n \rightarrow \infty} a_{n} / n=\infty$ and
(b-3) X_{n} are pairwise $N Q D$ identically distributed random variables and $E\left[X_{1}^{-}\right]<\infty, E\left[X_{1}^{+}\right]=$ ∞.

Then $\left(X_{n}\right)$ obeys the SLLN w.r.t. $\left(a_{n}\right)$ if and only if $\left(\left|X_{n}\right|\right)$ obeys the SLLN w.r.t. $\left(a_{n}\right)$.

Theorem 4 Assume that (a) and (b-3) hold. Then
(i) $\left(\left|X_{n}\right|\right)$ obeys the SLLN w.r.t. $\left(a_{n}\right)$ if and only if $\sum_{n=1}^{\infty} P\left(X_{n}>a_{n}\right)<\infty$
(ii) $P\left(S_{n}>a_{n}\right.$ i.o. $)=1$ if and only if $\sum_{n=1}^{\infty} P\left(X_{n}>a_{n}\right)=\infty$.

SLLN OF NQD-RANDOM VARIABLES WITH FINITE MEANS

To prove our results, we apply the result of the SLLN of NQD-random variables in the case of finite means together with the argument of Kruglov ${ }^{3}$.

Proposition 1 (Ebrahimi and Ghosh ${ }^{\mathbf{1 0}}$) Let $\quad\left(X_{n}\right)$ be an NQD sequence. Then the following results are true.
(i) $\left(f_{n}\left(X_{n}\right)\right)$ is an NQD sequence for any sequence of monotonically increasing functions $\left(f_{n}\right)$.
(ii) $\left(f_{n}\left(X_{n}\right)\right)$ is an NQD sequence for any sequence of monotonically decreasing functions $\left(f_{n}\right)$.
(iii) $\left(X_{n}^{+}\right)$and $\left(X_{n}^{-}\right)$are NQD sequences.
(iv) $\operatorname{Cov}\left(X_{i}, X_{j}\right) \leqslant 0$ for all $i \neq j$.

Theorem 5 (Matula ${ }^{\mathbf{1 1})}$ Let (Ω, F, P) be a probability space and $\left(A_{n}\right)$ a sequence of events.
(i) If $\sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty$, then $P\left(A_{n}\right.$ i.o. $)=0$.
(ii) If $\sum_{n=1}^{\infty} P\left(A_{n}\right)=\infty$ and $P\left(A_{k} \cap A_{m}\right) \leqslant$ $P\left(A_{k}\right) P\left(A_{m}\right)$ for $k \neq m$, then $P\left(A_{n}\right.$ i.o. $)=1$.

To prove Theorem 4, we need the SLLN for NQD random variables in the case of finite variances.

Theorem 6 Let $\left(X_{n}\right)$ be a sequence of $N Q D$ and not necessary identically distributed random variables and $E\left[X_{n}^{2}\right]<\infty$ for all $n \in \mathbb{N}$. If
(i) $\sup _{n \in \mathbb{N}} \frac{1}{n} \sum_{k=1}^{n} E\left[\left|X_{k}-E\left[X_{k}\right]\right|\right]<\infty$,
(ii) $\sum_{n=1}^{\infty} \frac{\operatorname{Var}\left[X_{n}\right]}{n^{2}}<\infty$,
then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(X_{k}-E\left[X_{k}\right]\right)=0 \text { a.s. }
$$

Proof: To prove the theorem, we follow the proof of Theorem 1 of Ref. 12. They used the pairwise independence only to show that

$$
\operatorname{Var}\left[\sum_{k=1}^{n} X_{k}\right]=\sum_{k=1}^{n} \operatorname{Var}\left[X_{k}\right] .
$$

In fact, in their proof, they need only the fact that

$$
\begin{equation*}
\operatorname{Var}\left[\sum_{k=1}^{n} X_{k}\right] \leqslant \sum_{k=1}^{n} \operatorname{Var}\left[X_{k}\right] \tag{1}
\end{equation*}
$$

Similarly, (1) holds by using the NQD-property which follows from Proposition 1 (iv).

Corollary 1 Let $\left(X_{n}\right)$ be an NQD sequence and not necessary identically distributed random variables. If $E\left[X_{n}^{2}\right]<\infty$ for all $n \in \mathbb{N}$ and
(i) $\sup _{n \in \mathbb{N}} E\left[\left|X_{n}\right|\right]<\infty$ and
(ii) $\sum_{n=1}^{\infty} \frac{\operatorname{Var}\left[X_{n}\right]}{n^{2}}<\infty$,
then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(X_{k}-E\left[X_{k}\right]\right)=0 \text { a.s. }
$$

Proof: It follows from Theorem 6 and the fact that

$$
\sup _{n \in \mathbb{N}} \frac{1}{n} \sum_{k=1}^{n} E\left[\left|X_{k}-\left[E X_{k}\right]\right|\right] \leqslant 2 \sup _{n \in \mathbb{N}} E\left[\left|X_{n}\right|\right]
$$

We have that

$$
\lim _{n \rightarrow \infty} \frac{1}{a_{n}} \sum_{k=1}^{n} X_{k}=0 \quad \text { a.s. }
$$

and

$$
\lim _{n \rightarrow \infty} \frac{1}{a_{n}} \sum_{k=1}^{n} X_{k}^{-}=0 \quad \text { a.s. }
$$

implies that

$$
\lim _{n \rightarrow \infty} \frac{1}{a_{n}} \sum_{k=1}^{n} X_{k}^{+}=0 \quad \text { a.s. }
$$

Hence
$\lim _{n \rightarrow \infty} \frac{1}{a_{n}} \sum_{k=1}^{n}\left|X_{k}\right|=\lim _{n \rightarrow \infty} \frac{1}{a_{n}} \sum_{k=1}^{n}\left(X_{k}^{-}+X_{k}^{+}\right)=0$ a.s.
This completes the proof.
Proof of Theorem 4: (i) Assume that $\left(\left|X_{n}\right|\right)$ obeys the SLLN w.r.t. $\left(a_{n}\right)$. Since

$$
P\left(\lim _{n \rightarrow \infty} \frac{1}{a_{n}} \sum_{k=1}^{n}\left|X_{k}\right|=0\right)=1
$$

by the result on p. 73 of Ref. $1, P\left(\left|X_{1}\right|+\cdots+\left|X_{n}\right|>\right.$ a_{n} i.o. $)=0$. This implies that $P\left(\left|X_{n}\right|>a_{n}\right.$ i.o. $)=$ 0 . Suppose that

$$
\sum_{n=1}^{\infty} P\left(X_{n}>a_{n}\right)=\infty
$$

and let $A_{n}=\left\{X_{n}>a_{n}\right\}$. Then by Theorem 5 (ii), $P\left(X_{n}>a_{n}\right.$ i.o. $)=1$ which implies that $P\left(\left|X_{n}\right|>\right.$ a_{n} i.o. $)=1$. This is a contradiction. Hence, $\sum_{n=1}^{\infty} P\left(X_{n}>a_{n}\right)<\infty$. On the other hand, we assume that $\sum_{n=1}^{\infty} P\left(X_{n}>a_{n}\right)<\infty$. This implies

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{n}=\infty
$$

by the result on p. 891 of Ref. 3. This with (a) and $E\left[X_{1}^{-}\right]<\infty$ implies

$$
\lim _{n \rightarrow \infty} \frac{1}{a_{n}} \sum_{k=1}^{n} X_{k}^{-}=0 \text { a.s. }
$$

In order to prove that $\left(\left|X_{n}\right|\right)$ obeys the SLLN w.r.t. $\left(a_{n}\right)$, it suffices to show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{a_{n}} \sum_{k=1}^{n} X_{k}^{+}=0 \text { a.s. } \tag{3}
\end{equation*}
$$

To do this, let
$Y_{n}=\frac{n}{a_{n}} X_{n}^{+} \mathbb{I}\left(X_{n}^{+} \leqslant 2 a_{n}\right), \quad Z_{n}=2 n \mathbb{I}\left(X_{n}^{+}>2 a_{n}\right)$
and $W_{n}=Y_{n}+Z_{n}$, where \mathbb{I} is the indicator function. Kruglov ${ }^{3}$ showed that

$$
\begin{align*}
& \sum_{n=1}^{\infty} \frac{\operatorname{Var}\left[Y_{n}\right]}{n^{2}}<\infty, \tag{4}\\
& \sup _{n \in \mathbb{N}} \frac{1}{n} \sum_{k=1}^{n} E\left[\left|Y_{k}-E\left[Y_{k}\right]\right|\right]<\infty, \tag{5}
\end{align*}
$$

and that if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(Y_{k}-E\left[Y_{k}\right]\right)=0 \text { a.s. } \tag{6}
\end{equation*}
$$

then (3) holds. Let

$$
\begin{aligned}
f_{n}(t) & =\frac{n}{a_{n}}\left(t \mathbb{I}\left(t \leqslant 2 a_{n}\right)+2 a_{n} \mathbb{I}\left(t>2 a_{n}\right)\right) \text { and } \\
g_{n}(t) & =2 n \mathbb{I}\left(t>2 a_{n}\right)
\end{aligned}
$$

Observe that f_{n} and g_{n} are increasing functions, $W_{n}=f_{n}\left(X_{n}^{+}\right)$and $Z_{n}=g_{n}\left(X_{n}^{+}\right)$. Hence, by Proposition 1 (i), we have that $\left(W_{n}\right)$ and $\left(Z_{n}\right)$ are sequences of pairwise NQD random variables. Next we will show that

$$
\begin{align*}
& \frac{1}{n} \sum_{k=1}^{n}\left(Y_{k}-E\left[Y_{k}\right]\right)+\frac{1}{n} \sum_{k=1}^{n}\left(Z_{k}-E\left[Z_{k}\right]\right) \\
& =\frac{1}{n} \sum_{k=1}^{n}\left(W_{k}-E\left[W_{k}\right]\right) \xrightarrow{\text { a.s. }} 0 . \tag{7}
\end{align*}
$$

By Theorem 6, we need to prove

$$
\begin{align*}
& \sup _{n \in \mathbb{N}} \frac{1}{n} \sum_{k=1}^{n} E\left[\left|W_{k}-E\left[W_{k}\right]\right|\right] \\
& \leqslant \sup _{n \in \mathbb{N}} \frac{1}{n} \sum_{k=1}^{n} E\left[\left|Y_{k}-E\left[Y_{k}\right]\right|\right] \\
& \quad+\sup _{n \in \mathbb{N}} \frac{1}{n} \sum_{k=1}^{n} E\left[\left|Z_{k}-E\left[Z_{k}\right]\right|\right] \\
& <\infty \tag{8}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\operatorname{Var}\left[W_{n}\right]}{n^{2}}<\infty \tag{9}
\end{equation*}
$$

To prove (8), we note that

$$
\begin{align*}
& \sup _{n \in \mathbb{N}} \frac{1}{n} \sum_{k=1}^{n} E\left[\left|Z_{k}-E\left[Z_{k}\right]\right|\right] \\
& \leqslant 2 \sup _{n \in \mathbb{N}} \frac{1}{n} \sum_{k=1}^{n} E\left[Z_{k}\right] \\
& =4 \sup _{n \in \mathbb{N}} \frac{1}{n} \sum_{k=1}^{n} k P\left(X_{k}^{+}>2 a_{k}\right) \\
& \leqslant 4 \sup _{n \in \mathbb{N}} \sum_{k=1}^{n} P\left(X_{k}^{+}>a_{k}\right) \\
& =4 \sum_{k=1}^{\infty} P\left(X_{k}^{+}>a_{k}\right) \\
& =4 \sum_{k=1}^{\infty} P\left(X_{k}>a_{k}\right) \\
& <\infty \tag{10}
\end{align*}
$$

From (5) and (10), we have (8).
To prove (9), we note from the fact $Y_{n} Z_{n}=0$ for all $n \in \mathbb{N}$ that

$$
\begin{aligned}
\operatorname{Var}\left[W_{n}\right] & =\operatorname{Var}\left[Y_{n}+Z_{n}\right] \\
& =\operatorname{Var}\left[Y_{n}\right]+\operatorname{Var}\left[Z_{n}\right]+2 \operatorname{Cov}\left(Y_{n}, Z_{n}\right) \\
& =\operatorname{Var}\left[Y_{n}\right]+\operatorname{Var}\left[Z_{n}\right]-2 E\left[Y_{n}\right] E\left[Z_{n}\right] \\
& \leqslant \operatorname{Var}\left[Y_{n}\right]+\operatorname{Var}\left[Z_{n}\right] .
\end{aligned}
$$

Hence, by (4) and the fact that
$\sum_{n=1}^{\infty} \frac{\operatorname{Var}\left[Z_{n}\right]}{n^{2}} \leqslant \sum_{n=1}^{\infty} \frac{E\left[Z_{n}^{2}\right]}{n^{2}}=4 \sum_{n=1}^{\infty} P\left(X_{n}^{+}>2 a_{n}\right)<\infty$,
we have

$$
\sum_{n=1}^{\infty} \frac{\operatorname{Var}\left[W_{n}\right]}{n^{2}} \leqslant \sum_{n=1}^{\infty} \frac{\operatorname{Var}\left[Y_{n}\right]}{n^{2}}+\sum_{n=1}^{\infty} \frac{\operatorname{Var}\left[Z_{n}\right]}{n^{2}}<\infty
$$

Hence, (9) holds.
From (10) and (11), by Theorem 6,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(Z_{k}-E\left[Z_{k}\right]\right)=0 \text { a.s. } \tag{12}
\end{equation*}
$$

From (7) and (12),

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(Y_{k}-E\left[Y_{k}\right]\right)=0 \text { a.s. }
$$

Hence, by Kruglov's result that if (6) then (3) holds,

$$
\lim _{n \rightarrow \infty} \frac{1}{a_{n}} \sum_{k=1}^{n} X_{k}^{+}=0 \text { a.s. }
$$

(ii) The "pairwise independence" condition was needed in two places in the proof of Kruglov ${ }^{3}$. These were in the proof that $P\left(A_{n}\right.$ i.o. $)=1$, and when applying Etemadi theorem ${ }^{14}$. In our proof, which closely follows that of Kruglov, we need to avoid using this condition. In the first place, we instead apply Theorem 5(ii) by setting $A_{n}=\left\{w \mid X_{n}(w)>a_{n}\right\}$. Since X_{n} 's are NQD, $P\left(A_{k} \cap A_{m}\right) \leqslant P\left(A_{k}\right) P\left(A_{m}\right)$ for all $k \neq m$. Then $P\left(A_{n}\right.$ i.o. $)=1$. In the second place, we avoid applying the Etemadi theorem by using Corollary 2. Then we follow the proof of Theorem 2 (ii) and the theorem is proved.

Acknowledgements: This paper was written while the authors visited the Institute for Mathematical Sciences, National University of Singapore. This research was partially supported by the Centre of Excellence in Mathematics, Commission on Higher Education, Thailand.

REFERENCES

1. Chung KL (1974) A Course in Probability Theory, 2nd edn, Academic Press, New York.
2. Feller W (1946) A limit theorem for random variables with infinite moments. Am J Math 66, 257-62.
3. Kruglov VM (2008) A strong law of large numbers for pairwise independent identically distributed random variables with infinite means. Stat Probab Lett 78, 890-5.
4. Lehmann EL (1966) Some concepts of dependence. Ann Math Stat 37, 1137-53.
5. Esary J, Proschan F, Walkup D (1967) Association of random variables with applications. Ann Math Stat 38, 1466-74.
6. Joag-Dev K, Proschan F (1983) Negative association of random variables with applications. Ann Stat 11, 286-95.
7. Geisser W, Mantel N (1962) Pairwise independence of jointly dependent variables. Ann Math Stat 33, 290-1.
8. Lancaster HO (1965) Pairwise statistical independence. Ann Math Stat 36, 1313-7.
9. O'Brien GL (1980) Pairwise independent random variables. Ann Probab 8, 170-5.
10. Ebrahimi N, Ghosh M (1981) Multivariate negative dependence. Comm Stat Theor Meth A10, 307-37.
11. Matula P (1992) A note on the almost sure convergence of negatively dependent variables. Stat Probab Lett 15, 209-13.
12. Csorgo S, Tandori K, Totik V (1983) On the strong law of large numbers for pairwise independent random variables. Acta Math Hung 42, 319-30.
13. Azarnoosh HA (2003) On the law of large numbers for negatively dependent random variables. Pakistan J Stat 19, 15-23.
14. Etemadi N (1981) An elementary proof of the strong law of large numbers. Probab Theor Relat Field 55, 119-22.
