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ABSTRACT : Many large urban areas experience elevated concentrations of ground-level ozone pollution, which is reported
to cause adverse effects on human health and the environment. The prediction of ground-level ozone is an important topic,
which attracts attention from research communities and policy makers. This study investigates the potential of using the
multi-layer perceptron (MLP) neural network technique to predict daily maximum ozone levels in the Bangkok urban area.
The MLP was trained and validated using ambient air quality monitoring data and observed meteorological data for the
high ozone months (January to April) in the area during a four year period, 2000–2003. The inputs to the MLP included the
average concentration of air pollutants (nitrogen oxide, nitrogen dioxide, and non-methane hydrocarbon) and meteorological
variables (wind speed and direction, relative humidity, temperature, and solar radiation) during the morning rush hours. The
MLP network, which contained 8 input layer neurons, two hidden layers (10 hidden neurons for the first hidden layer,
14 hidden neurons for the second hidden layer) and 1 output layer neuron, was found to give satisfactory predictions for
both the training and validated data sets. The performance of the MLP was better than the multivariable linear regression
model developed based on the same dataset. For the validated dataset, the MLP predicted the daily maximum 1-h ozone
concentration in the study area with a mean absolute error of 10.3 ppb, a root mean square error of 13.5 ppb, a coefficient of
determination (R2) of 0.85, and an index of agreement of 0.89.
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INTRODUCTION

Ground-level ozone (O3) has recently become a seri-
ous air pollution problem in many urban areas around
the world. Numerous studies indicate that exposure
to an elevated concentration of O3 air pollution is a
potential human health hazard1–3. O3 also affects veg-
etation adversely. The negative effects may relate to
visible foliar injury and to physiological impairment
which consequently lead to a significant reduction in
growth and yield of agricultural crops and forests4–7.
Accurate prediction, with a long enough forecast time
span, of O3 air pollution in an area is important as
it can produce necessary warning signals to help in
reducing exposure and minimize adverse effects on
humans and the environment.

As for any other air pollutants, O3 can be pre-
dicted using statistical models or deterministic mod-
els. Deterministic models are based on a fundamen-
tal mathematical description of atmospheric physical
and chemical processes8–10. These models, which
numerically solve the complete set of time-dependent
equations incorporating complex photochemical reac-

tion mechanisms, have been used to study pollution
of photochemical smog in urban areas, regional-scale
dispersion of chemical species, long-range transport,
and others. The deterministic models are highly so-
phisticated because they require a high level of human
resources and powerful computers. Most importantly,
these models require detailed and accurate emission
data and meteorological inputs that are not commonly
available in many regions. If these inputs are only
available with large uncertainty then the results of
deterministic models are questionable.

Statistical models are based on semi-empirical
statistical relations among available data and mea-
surements. They do not necessarily establish deter-
ministic cause-effect relationships. They attempt to
determine the underlying relationship between sets
of input data (predictors) and targets (predictands).
Many different statistical techniques have been pro-
posed to predict O3 peaks. These include multiple
linear regression11–13, generalized additive models,
classification and regression tree analysis11, and appli-
cation of principal component analysis and clustering
technique14,15. However, the O3 formation process
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involving precursor emissions, atmospheric transport
and mixing, and a complex system of photochemical
reactions, is extremely nonlinear and non-stationary.
None of the traditional statistic models are sufficiently
dynamic to capture the rapid fluctuations in the O3
time series. Therefore, all these models appear to have
some difficulty in forecasting high O3 events.

Artificial neural network (ANN) is another statis-
tical approach which is frequently used in atmospheric
research16. ANNs, which can be trained to ap-
proximate virtually any smooth, measurable function,
have become popular in atmospheric science and have
produced promising results. In particular, the use
of the neural networks in air quality modelling has
been shown to give acceptable results for atmospheric
pollution forecasting of pollutants such as O3

17–21,
SO2

22, PM10
23,24, and PM2.5

25.
Bangkok, where the highest O3 level is recorded

in the period from January to April26, has been
the target of deterministic models for simulation of
O3 episode for assessment of potential impacts of
different management strategies on air quality27 and
scenarios study28. So far, no prediction tools have
been applied to forecasting ground level O3 in the city.
This study therefore has been carried out to assess the
applicability of ANN for O3 prediction in Bangkok.
The feed forward backpropagation neural network,
i.e., the multi-layer perceptron (MLP), was used to de-
velop a model for prediction of daily maximum 1-h O3
levels in the city. The performance of the model was
compared to the results from the multivariate linear
regression (LR) model, which is applied to the same
data set. The daily maximum 1-h O3 concentration
is of interest as Thailand is still subject to the 1-h O3
standard (100 ppb).

METHOD

Input data preparation

There are 13 automatic ambient air quality stations
in Bangkok operated by the Thailand Pollution Con-
trol Department (PCD). These stations are equipped
to monitor carbon monoxide, total suspended solid
(TSP), particulate matter (PM10), sulphur dioxide,
nitrogen monoxide, nitrogen dioxide, ozone, methane,
and non-methane hydrocarbons (NMHC). The mon-
itoring stations in Bangkok are divided into two
categories; the general ambient air quality monitor-
ing stations that are located 50–100 m from main
roads and the curbside street-level ambient air quality
monitoring stations that are 2–5 m from main roads.
The monitoring data for Bangkok were collected on
hourly basis covering the period of January 2000 to

August 2003 from the PCD when O3 monitoring data
was only available at 11 stations (out of 13 stations)
including 10 ambient stations and 1 roadside station.

Analysis of O3 pollution during the selected pe-
riod shows that the curbside stations, as expected, are
characterized by a lower frequency of O3 exceeding
the Thailand hourly Ambient Air Quality Standard
(AAQS) of 100 ppb than the ambient stations. Highest
maximum 1-h O3 levels exceeding the AAQS were
recorded at ambient stations at a distance from the
city centre. The results of the analysis also indicated
that high O3 pollution in Bangkok occurred mainly
in the period from January to April (winter and local
summer) and the lowest pollution was during the mid-
rainy season in August, which is similar to the results
of a previous study26. Examination of the diurnal
distribution frequency of maximum 1-h O3 levels over
all the monitoring stations shows the highest daily O3
concentrations in Bangkok occur in the period from
13:00–15:00. During the dry season period covered
by our study, the daily O3 level is observed to sharply
increase from 10:00 to 11:00 and normally reach
an already high values at 11:00 but the maxima are
observed only in the afternoon, at 13:00 or later26.

The O3 data used in this study are the highest
values of daily maximum 1-h concentrations observed
among all the monitoring stations, i.e., the peak O3
in Bangkok (one value per day over the entire the
area covered by the monitoring network). Thus for
each day during the study period from 1 January to
30 April for the years 2000–2003, the highest peak
O3 observed in the city was selected and used for
modelling. Concentrations of O3 precursors including
NMHC, NO and NO2 used for modelling are the
averages of observed data of the respective pollutant
over all monitoring stations in the study area between
6:00 and 9:00, which includes the morning rush hours
of the day of interest. The input containing these
average values produced a better model performance
as compared to other trials with various combinations
of individual hourly monitoring data. In fact, the
maximum morning levels of the pollutants normally
occur during this period but the hours of the maxima
occurrence varied from one station to another26. In
addition, taking the average value has helped to fill up
the missing hourly data that occasionally occurred in
the monitoring data series.

In this study meteorological data collected at the
Bangkok Metropolis station, which is located in the
city centre, were used. The meteorological data were
obtained from the Thai Meteorological Department
for the same period as the air quality monitoring data.
The selected meteorological variables include the av-
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Fig. 1 Architecture of two hidden layer feed-forward neural
network.

erage values from the observations in the morning
hours (6:00 to 10:00) of wind speed (WS), relative
humidity (RH) and global radiation (GRAD), and the
daily maximum temperature (Tmax). Note that next
day predicted meteorological variables are widely
available for Bangkok and can be used instead of
the observed ones. Accordingly, this would reduce
the dependence of the observed data availability and
increase the forecast horizon.

To remove the discontinuity of the wind direction
(WD) angle at 360° the wind direction index (WDI)
was used to represent the wind direction, which was
calculated using

WDI = 1 + sin
(

WD +
π

4

)
,

where WD is the wind direction (with 0° correspond-
ing to the north). Thus, the WDI has a minimum of
0.07 for the southerly wind (180°) and a maximum of
1.96 when WD is 315°.

The total dataset used for the modelling included
481 lines (patterns – 1 per day) and 9 variables
(NMHC, NO, NO2, O3, WS, WDI, RH, Tmax, and
GRAD). The data set was randomly divided into two
subsets: the first subset of 361 patterns (75%) was
used for training the MLP model and for development
of the regression model, and the remaining 120 pat-
terns formed the second data subset (25% of the data)
that was used for the model validation.

Artificial neural networks

Artificial neural networks (ANNs) are computer pro-
grams designed to emulate biological neural networks
(such as the human brain) in terms of learning and
pattern recognition. ANNs have been under devel-
opment for many years in a variety of disciplines to
derive meaning from complicated data and to make
predictions. The most popular ANN is feed-forward
back-propagation, multi-layer perceptron (MLP) neu-
ral network, which has found applications in atmo-
spheric science16.

The major building block for any ANN archi-
tecture is the processing element or neuron. An
ANN generally consists of three or more layers: an
input layer, one or more hidden layers, and an output
layer. This study uses a four-layer feed-forward back-
propagation neural network architecture as shown in
Fig. 1. The input neurons receive data from external
sources to the system, the hidden neurons receive
signals from all of the neurons in the preceding layer,
and the output neurons send information out of the
system. These neurons are connected together by lines
of communication called connections. Associated
with each connected pair of neurons is an adjustable
value or weight.

In this study we selected the feed-forward back-
propagation MLP to develop the ANN model. Eight
of the variables listed above (nine variables minus
O3) were used as inputs and the output from the
MLP model was the daily maximum 1-h O3 level
over Bangkok (one value per day in the study area).
All input variables were normalized to provide values
between 0.05 and 0.95 using

O′
i =

0.9(Oi − Oi,min)
Oi,max − Oi,min

+ 0.05,

where O′
i is a transformed observed value,Oi the

actual observed value,Oi,min and Oi,max are the
minimum and maximum values among all observed
values over Bangkok. Normalization of input data was
performed for two reasons: to provide commensurate
data range so that the models were not dominated
by any variable that happened to be expressed in
large numbers, and to avoid the asymptotes of the
sigmoid function. Once the best network is found, all
the transformed data were converted back into their
original values using

Oi =
(Oi,max − Oi,min)(O′

i − 0.05)
0.9

+ Oi,min.

In the training process, the number of hidden
layers and hidden nodes, and connection weights
between neurons of the MLP network were deter-
mined by an iterative process in training stage with
the training subset (361 patterns in this study) until
the training error, measured by a set of performance
indicators, is below the acceptable level. The initial
values of the weights were randomly selected and
they could be both negative and positive values. The
activation function used in the hidden and output
layers was determined by the required degree of ac-
curacy of the problem under study. In this study,
the learning algorithm used was Levenberg-Marquardt
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back-propagation of the MATLAB Neural Network
Toolbox. The activation function selected for the
layers was logistic sigmoid for hidden layers and
linear for the output layer. The number of hidden
layers and hidden neurons (nodes) were increased sys-
tematically, checking each time if the prepared neural
network produced the stable performance error in the
performance plot until the best MLP was found. The
trained MLP network model was then validated with
the second data subset of 120 patterns. The resulting
predictions were then compared with the observed
data, and performance indicators were determined.

Performance indicators

The performance indicators of the models were deter-
mined to provide a numerical description of the accu-
racy of model predictions, and to compare the perfor-
mance among the models. A range of performance
indices are generally used for model performance
evaluation29–31. The general statistical measures con-
sidered here include the mean absolute error (MAE),
the root mean square error (RMSE), the coefficient of
determination (R2), and the relative measure of error
called the index of agreement (d)32,33:

MAE =
1
n

n∑
i=1

|Pi − Oi|

RMSE=

√√√√ 1
n

n∑
i=1

(Pi − Oi)
2

R2 =
∑n

i=1 (Pi − Ō)2∑n
i=1 (Oi − Ō)2

d = 1 −
∑n

i=1 (Pi − Oi)
2∑n

i=1 (|Pi − Ō| + |Oi − Ō|)2

wheren is the number of data points,Pi the predicted
data point, and̄O is the average of the observed data.

We also calculated one statistical measure rec-
ommended for urban-scale O3 model29, the unpaired
peak prediction accuracy (UPA) which is given by
UPA = (Pi − Oi)/Oi and is meant to evaluate the
model’s ability to reproduce the highest observed con-
centration anywhere in the study area. It is therefore
considered to be suitable for this study as our concern
is the maximum O3 in Bangkok on each day during
the study period.

Thus, for each day of the study period, there is one
pair of observation-prediction maximum O3 levels.
We used a cutoff value of 60 ppb O3 for observed
O3. Hence only the observation-prediction pairs with

Table 1 Performance indicators for the developed models.

Indicators MLP LR

Training Testing Training Testing

MAE (ppb) 8.6 10.3 16.9 16.4
RMSE (ppb) 11.8 13.5 21.4 22.4
R2 0.89 0.85 0.39 0.34
d 0.92 0.89 0.74 0.68
UPA (%) −26 to 29 −24 to 23 −58 to 70 −63 to 56

observed O3 above 60 ppb were used for UPA de-
termination. The US EPA (1991) guidelines give a
recommended UPA range of ± 20%.Table 1shows
the performance evaluation results of the models.

Multivariate regression model

The accuracy of the developed MLP network was also
compared to that of a LR model with ordinary least
squares developed based on the same data set. The LR
model between the eight input variables and the output
(peak O3) was performed using a stepwise regression
analysis on the first data subset (training subset for
MLP) to determine the regression coefficients.

The preliminary regression model has the general
form:

Y = β0 + β1X1 + β2X2 + β3X3 + · · · + βkXk + ε,

whereY stands for the predictand variableY (e.g.,
daily maximum O3), βi, i = 0, 1, 2, . . . k, are
the regression coefficients,Xi is a set ofk predictor
variablesX with correspondingβ coefficients, andε
is the residual error.

Regressions were performed using the SPSS soft-
ware package. The developed regression model was
also tested for performance using the 2nd data subset
used for the MLP validation.

RESULTS AND DISCUSSION

Linear regression model

The stepwise regression procedure on the first data
subset (the same subset used for training the MLP)
showed that NO2, Tmax, WS, RH, NMHC, and WDI
are all important for prediction of daily maximum 1-h
O3 in Bangkok (Table 2). The best single variable
among the eight independent variables is NO2 as
expected since NOx is an important O3 precursor.
The second best single variable wasTmax, which is
most probably due to the fact that the photochemical
reaction rates are temperature dependent34.

The LR modelO3 = 0.650 NO2 + 2.983 Tmax −
12.738 WS−0.806 RH+6.367 NMHC−4.26 WDI +
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Table 2 Stepwise regression results.

Steps Set of variables R2

1 NO2 0.200
2 NO2, Tmax 0.273
3 NO2, Tmax, WS 0.315
4 NO2, Tmax, WS, RH 0.351
5 NO2, Tmax, WS, RH, NMHC 0.371
6 NO2, Tmax, WS, RH, NMHC, WDI 0.396

6.121 was found to give the best fit, with a MAE of
16.9 ppb, a RMSE of 21.4 ppb, aR2 of 0.39, and
a d of 0.74 (Table 1). This model was then applied
to the testing subset of data (the same as for MLP)
for prediction. Scatter plots of the actual monitoring
O3 concentrations versus the predicted values by this
model for the training and testing subsets of data are
given inFig. 2. The time series of the predicted results
and the observed O3 concentrations for the testing
dataset is shown inFig. 3. This simple statistical
model, as expected, underestimates the peak O3 values
at the beginning and at the end of the data series
(Fig. 3). Better prediction is recorded in the middle
of the data series, from the 20th to 70th data points.
In general, the performance of this simple statistical
model is considered to be poor.

Artificial neural network model

The iterative process in the training stage found that
the architecture of the best MLP network should be 8-
10-14-1, i.e., it should have the input layer containing
8 neurons, the first hidden layer containing 10 neu-
rons, the second hidden layer containing 14 neurons,
and the output layer with 1 neuron. The scatter plots
of predicted and observed O3 concentrations for the
training and testing datasets are illustrated inFig. 4.
The MAE and the RMSE for the training dataset are
8.6 and 11.8 ppbv, respectively. The corresponding
errors for the testing dataset were 10.3 and 13.5 ppbv,
respectively. The time series of predicted versus ob-
served O3 concentrations for the two datasets (Fig. 5
andFig. 6) show that the predicted values are in a good
agreement with the observed ones. In particular, the
peak O3 values in the time series shown inFig. 6have
been captured satisfactorily by this MLP model which
is better than the simple LR model discussed above.

Comparative analysis of the performance of the
models

The MAE and the RMSE values of the MLP predicted
values are lower than those from the LR model for
both training and validation data subsets (Table 1).
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Fig. 2 Scatter plots of observed versus predicted O3 levels
by the regression model: (a) training dataset (b) testing
dataset.
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Fig. 3 Observed versus predicted O3 levels by the LR model
for the testing dataset.

The peak values in the O3 data series were underes-
timated by LR (Fig. 7). The reason for the underes-
timation is that the fitting of regression coefficients is
solved using a least-squares method, which minimizes
the sum of squared errors37. Therefore, the LR
does not capture the extreme values. The regression
analysis process aims at modelling the ‘average’ be-
haviour for the predictand (output) variable, whereas
with regards to air quality standards, the prediction of
extreme O3 levels is much more important from the
health perspective. Due to the high nonlinearity of the
O3 photochemical formation process and the complex
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Table 3 Overview of selected studies on prediction daily maximum O3 using ANNs.

Reference Location Data set MAE RMSE R2

Comrie19 USA, 8 cities 1991–1995 7.01–13.46 8.82–17.53 0.37–0.69
Cobourn et al35 USA, 7 sites 1998–1999 11.6–13.4 14.4–16.9 NA
Chaloulakou et al24 Athens, 4 sites 1992–1999 17.3–32.6 12.6–21.1 0.45–0.76
Zolghadri et al36 Bordeaux, France 1998–2001 11.6 NA NA
This study Bangkok 2000–2003 8.6–10.3 11.8–13.5 0.85–0.89

NA, not available
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Fig. 4 Scatter plots of observed versus MLP model pre-
dicted values: (a) training dataset (b) testing dataset.
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Fig. 5 Observed versus predicted O3 by the MLP model for
the training dataset.

interactions between meteorological variables and O3,
the MLP gives better predictions for the maximum
daily 1-h O3 values that exceed the Thailand AAQS
of 100 ppbv.
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Fig. 6 Observed versus predicted O3 by the MLP model for
the testing dataset.
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Fig. 7 Comparison of O3 prediction models on the testing
dataset.

29% and from−24 to 23% for training and validation
data subsets of the MLP modelling, respectively. The
corresponding values for the LR model ranged from
−58 to 70% and from−63 to 56%, respectively. For
the MLP model, there were 21 cases (5.8%) in the
training dataset and 6 cases (5%) in the validation
dataset which were larger than ±20%. Thus, the
majority of the predictions by MLP for both data
subsets met the US EPA criterion. For the LR
model, the percentages of the predicted values that
did not meet this UPA criterion are higher, i.e. 90
pairs (25.0%) and 33 pairs (27.5%), respectively, were
larger than ±20%. Thus, considering this US EPA
UPA criterion, the performance of the MLP model is
largely satisfactory and almost comparable to those
3D models mentioned above. This further suggests
that the MLP model is suitable for air pollution
predictions when there is no accurate emission data
available. It is worth mentioning that the lack of
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an accurate emission database is one of the obsta-
cles for the application of sophisticated deterministic
models in many places. Previous simulations of O3
episodes in the Bangkok metropolitan region using 3D
deterministic models, Variable Grid Urban Airshed
Model (UAM-V) and CHIMERE27,28, based on the
PCD emission database, produced the O3 prediction
with a UPA that generally did not meet the US EPA
criteria (within ±20%). These studies suggested that
the PCD emission database should be further revised.
In fact, when the 3D models were run with a hypoth-
esized/modified emission input data the performance
in meeting the UPA criteria was improved.

Based on MAE, RMSE andR2 (Table 3), the
performance of our MLP model are similar to other
published studies of ANN O3 prediction models
worldwide but with a higherR2. It is interesting
to note a similarity in the performance of the ANN
models among reviewed studies, although the test
cases were applied to different urban environments,
different meteorological conditions and at different
time periods.

The MLP model developed in this study has been
specifically constructed for Bangkok based on the
data of the period with the highest O3, 1 January–
30 April. This selection of the data period, however,
largely excluded effects of seasonal factors in the
model formulation and performance. The model has
not been tested on the additional data sets, which is
required to check the model generalization on unseen
data16,30. Thus, model testing should be conducted
for a large enough dataset before application for op-
erational purpose. In addition, a new model may be
required for the wet season when O3 is generally low.

CONCLUSIONS

The developed MLP model with 2 hidden layers
performs satisfactorily in prediction of the daily max-
imum 1-h O3 concentrations in Bangkok. The model
performance is significantly better than the LR model
obtained by the stepwise regression, especially for the
peak O3 concentrations. The MLP model is a simple
model, which can provide relatively reliable estimates
of maximum daily O3 based on only limited ambient
air monitoring data. The ANN approach can be used
to develop models for prediction of air pollution in
developing countries where a common lack of the
accurate emission data prevents the application of
more sophisticated dispersion models. The prediction
models developed in this study use the input con-
sisting of the air quality and meteorological variables
measured in the morning of the prediction day. Next
day predicted meteorological variables can be used to

reduce the dependence of the observed data availabil-
ity and increase the forecast horizon. Thus, the model
can provide the predicted O3 level 4–5 h in advance
which would provide enough time for warning as
daily maxima in Bangkok occur in the afternoon.
A longer forecast horizon, however, is desirable for
effective warning of high O3 concentrations. This
calls for future research to focus on the development
of ANN models to provide, for example, the next day
maximum O3 forecast. Other variables, such as the
previous day O3 maxima, can be used to improve the
model performance. Intensive testing with a large
dataset is still required before the developed MLP
model can be applied for the operational purpose.
Other model performance indices that are applicable
when the model is applied to assess the predicted O3
levels against the ambient air quality standard such as
verification statistics for category forecasts30 should
be considered. Furthermore, the MLP model can be
used in combination with other forecasting methods to
further ensure the applicability over different periods
of the year.
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