
R ESEARCH ARTICLE

doi: 10.2306/scienceasia1513-1874.2009.35.089
ScienceAsia35 (2009): 89–94

Particle swarm optimization algorithm applied to
scheduling problems
Pisut Pongchairerks

Industrial Engineering Programme, School of Manufacturing Systems and Mechanical Engineering,
Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12121, Thailand

e-mail: pisut@siit.tu.ac.th
Received 30 Sep 2008
Accepted 2 Feb 2009

ABSTRACT : This research introduces three heuristic algorithms for solving job-shop scheduling problems, job-shop
scheduling problems with multi-purpose machines, and open-shop scheduling problems. All these algorithms are based on
the particle swarm optimization algorithm, and generate solutions that belong to the class of parameterized active schedules
via their specific decoding procedures. Comparison of the benchmark test results of the proposed algorithms with those of
existent algorithms reveal that the proposed algorithms perform better in some instances.

KEYWORDS : job-shop, open-shop

INTRODUCTION

Scheduling involves the allocation of resources to
activities over time. Most organizations must schedule
resources on a recurrent basis and this creates consid-
erable demand for good scheduling techniques. Since
the mid 1950s, researchers have been advocating the
use of formal optimization algorithms to find solutions
to scheduling problems. Unfortunately, after fifty
years of work, these methods can still only guarantee
optimality for a very limited set of problems.

There are two main reasons for the limited success
of traditional optimization algorithms to scheduling.
First, most scheduling problems belong to the class
of NP-hard problems. This class of problems is
distinguished by rapid growth in the number of po-
tential solutions with modest growth in the number of
resources to be scheduled. The growth is so quick that
even the fastest computer could not search through
every potential solution to large-scale problems in a
reasonable amount of time. Second, for many practi-
cal scheduling problems, it is difficult to capture the
problem formulation in a closed-form mathematical
expression. This difficulty is perhaps the reason why
most scheduling is still done in an ad hoc manner.
Because of these two difficulties, many researchers
have thus turned their attention to population-based
stochastic search methods, e.g., genetic algorithms1–4,
ant colony optimizations5–8, and particle swarm opti-
mizations9, which are able to find near-optimal solu-
tions within an acceptable computation time.

The main purpose of this research is to apply

particle swarm optimization (PSO) to three types of
scheduling problem. There are many variants of the
PSO algorithm in the literature9–12. We will use
the GLN-PSOc algorithm10,11 since it enables the
swarm to explore different parts of the search spaces
simultaneously. This algorithm is an extension of
the GLN-PSO algorithm, some solutions of which are
generated via the crossover operator.

PSO is a generic algorithm. It must therefore
be combined with a specific decoding procedure in
order to generate solutions for a given problem. We
introduce the GLN-PSOc with three decoding proce-
dures, based on the random keys representation13, to
solve each scheduling problem. The proposed de-
coding procedure enables GLN-PSOc to generate the
solutions which belong to the class of parameterized
active schedules14. This class of schedules has played
an important role as the efficient solution space for
several genetic algorithms14–17.

DESCRIPTION OF PROBLEMS

The job-shop scheduling problem (JSP) can be stated
as follows. There are a set ofn jobsJi (i = 1, . . . , n)
and a set ofm machinesMj (j = 1, . . . ,m). Each
job Ji consists of an ordered set ofm operations
Oi1, Oi2, . . . , Oim. The order of operations cannot
be changed. Furthermore, operationOij must be
processed by exactly one given machine duringτij

time units without preemption, i.e., when the opera-
tion has been already started, it cannot be interrupted
or temporarily stopped until finished. Also, each
machine can handle only one job in a given time

www.scienceasia.org

http://dx.doi.org/10.2306/scienceasia1513-1874.2009.35.089
http://www.scienceasia.org/2009.html
mailto:pisut@siit.tu.ac.th
www.scienceasia.org

90 ScienceAsia35 (2009)

period, and each job can be processed on only one
machine in a given time period. The problem requires
finding a feasible allocation of all operations to time
intervals on the given machines such that some objec-
tive is optimized. Allocation of all operations to time
intervals is known as scheduling. Here our objective is
to minimize the completion time of the last given job.

The job-shop scheduling problem with multi-
purpose machines (MPMJSP)18 arises in connection
with flexible manufacturing systems where the ma-
chines are equipped with different tools. It is pos-
sible to define the MPMJSP as an extension of the
JSP where operationOij has to be processed by
exactly one machine in a set of machinesAij ⊆
{M1, . . . ,Mm} duringτij time units without preemp-
tion.

The open-shop scheduling problem (OSP) is a
special case of the JSP where the operations consti-
tuting a job can be processed in any order. For the
OSP letOk, wherek = m(i − 1) + j, represent the
operation of jobJi that must be processed by machine
Mj duringτk time units without preemption.

NOTATION AND TERMINOLOGY OF PSO
ALGORITHM

A population or swarm is a set ofK particles located
in D-dimensional space. At iterationt (wheret =
1, . . . , T), particlei (wherei = 1, . . . ,K) has a po-
sition Xi(t) ≡ (xi1(t), . . . , xid(t), . . . , xiD(t)) and
a velocity Vi(t) ≡ (vi1(t), . . . , vid(t), . . . , viD(t)).
The position and velocity components satisfyXmin 6
xid(t) 6 Xmax and |vid(t)| 6 Vmax, respectively.
The velocityVi(t + 1) is the rate at which particlei
moves from positionXi(t) to positionXi(t + 1).

Each positionXi(t) may directly or indirectly
represent a solution of a specific problem. The
objective function value of the solution of a specific
problem decoded from the positionXi(t) is denoted
by f(Xi(t)). This is also known as the fitness value.
In a minimization problem,Xi is ‘better’ thanXj if
f(Xi) < f(Xj). Here we only consider minimization
problems since a maximization problem can be turned
into a minimization problem by negating the fitness
value.

The personal best position of particlei is the po-
sition at whichf(Xi) achieved its lowest value so far
and is denoted byPi ≡ (pi1, . . . , pid, . . . , piD). The
global best position,Pg ≡ (pg1, . . . , pgd, . . . , pgD), is
the best position found by the swarm so far. The local
best position for particlei is the best position found by
particles in thena-adjacent neighbourhood of particle
i and is denoted byPli ≡ (pli1, . . . , plid, . . . , pliD).
For oddna, the adjacent neighbourhood of particlei

contains the particlesi − (na − 1)/2, . . . , i, . . . , i +
(na − 1)/2 whereK is added or subtracted from the
particle index if it lies outside1, . . . ,K.

The near neighbour best position19 is denoted by
Pni = (pni1, . . . , pnid, . . . , pniD) in whichpnid = pjd

where, for eachd, the value ofj 6= i is chosen so as to
maximize the value of the fitness-distance ratio,

γ(j, i, d) =
f(Xi)− f(Pj)
|pjd − xid|

. (1)

Hence, unlike the other best positions defined above,
Pni will in general not be a position of an existing
particle.

DESCRIPTION OF GLN-PSOc ALGORITHM

The GLN-PSO algorithm is an extension of the stan-
dard PSO algorithm using the global, local, and near
neighbour best positions simultaneously in order to
update the particle velocities10,11. It outperforms the
standard version in terms of solution quality. One
advantage of GLN-PSO over the standard PSO is
that GLN-PSO uses multiple social learning structures
which can reduce the rate of swarm clustering, and
thus enable the swarm to explore different parts of the
search spaces simultaneously.

In order to enhance the search performance of
GLN-PSO in the search space based on a random
keys representation13, this study combines GLN-PSO
with a crossover operator. The GLN-PSO combined
with this crossover operator is henceforth called GLN-
PSOc. The purpose of this modification is to maintain
the diversity of the swarm to keep it from premature
convergence to a local optimum.

At each iteration in the GLN-PSOc algorithm, the
position of each particle is updated by using either
the traditional GLN-PSO equations or by performing
a crossover between its current position and the global
best position. For each particle, the type of update
is determined probabilistically; the probability for
performing a crossover isqc.

The traditional GLN-PSO equations (applied with
probability1− qc) are

vid(t + 1) =


−Vmax, a(t) < −Vmax,

a(t), −Vmax 6 a(t) 6 Vmax,

Vmax, a(t) > Vmax,
(2)

xid(t + 1) =


−Xmax, b(t) < −Xmax,

b(t), −Xmax 6 b(t) 6 Xmax,

Xmax, b(t) > Xmax,
(3)

www.scienceasia.org

http://www.scienceasia.org/2009.html
www.scienceasia.org

ScienceAsia35 (2009) 91

where

a(t) = w(t)vid(t) + cpu(pid − xid(t))
+ cgu(pgd − xid(t)) + clu(plid − xid(t))
+ cnu(pnid − xid(t)),

b(t) = x(t) + vid(t + 1),

in which w(t) is known as the inertia weight,cp,
cg, cl, and cn are constants (known as acceleration
constants), andu represents a random number from
the uniform distribution on the interval[0, 1].

For the crossover procedure (applied with proba-
bility qc),

vid(t + 1) = vid(t) (4)

xid(t + 1) =

{
xid(t) if u < qu,

pgd otherwise.
(5)

wherequ is a constant satisfying0 < qu < 1.

Algorithm 1 GLN-PSOc procedure
Step 1: Sett = 1. Initialize Xi(1) andVi(1).
Step 2: Evaluatef(Xi), then updatePi, Pg, Pli, Pni,
and then obtainXi(t + 1) andVi(t + 1).

Step 3: If the stopping criterion is satisfied, stop.
Otherwise, increaset by 1 and go to Step 2.

APPLICATION OF GLN-PSO c TO
SCHEDULING PROBLEMS

The GLN-PSOc algorithm is a generic optimizer and
is therefore applicable to many types of optimization
problem. The problem-specific part is how to decode
a particle position into a solution. Thus, in order to
apply GLN-PSOc to the three problems JSP, MPMJSP,
and OSP, the specific solution decoding procedures
are proposed to deal with each problem. To simplify
the terms often used in this paper, let JSP-DECODE,
MPM-DECODE, and OSP-DECODE represent the
solution decoding procedures for JSP, MPMJSP, and
OSP, respectively. Then, let JSP-PSO, MPM-PSO,
and OSP-PSO represent the GLN-PSOc using JSP-
DECODE, MPM-DECODE, and OSP-DECODE, re-
spectively.

In order to decode a particle position into a
solution, the three mentioned decoding procedures
use a random keys representation similar to that used
in the genetic algorithm of Bean13. The random
keys representation encodes a solution with random
numbers where these numbers are used as sort keys to
decode the solution. The important feature of the ran-
dom keys representation is that all particle positions
can represent feasible solutions without requiring any
repair method.

The three decoding procedures JSP-DECODE,
MPM-DECODE, and OSP-DECODE convert a parti-
cle position into a parameterized active schedule. All
of these decoding procedures consist of two steps:
(1) decoding a particle position into operation pri-
orities, and (2) constructing a parameterized active
schedule by using the predefined operation priorities.
Each decoding procedure has its own distinct method
for implementing these steps.

Decoding a particle position into operation
priorities

In both JSP-DECODE and MPM-DECODE, a particle
position is decoded into an operation-based permuta-
tion which is a representation of operation priorities.
For an n-job, m-machine instance, the operation-
based permutation3 is a sequence ofmn integers,
where each job index appears in the permutation
for exactly m times. The method for decoding a
particle position, i.e.,X = (x1, x2, x3, . . . , xmn),
into an operation-based permutation, i.e.,π =
(π1, π2, π3, . . . , πmn), is presented inAlgorithm 2.

Algorithm 2 To decode a particle position into an
operation-based permutation.
Step 1: Sort the components ofX into ascending
order.

Step 2: Arrange the components ofπ in the same
order as theX components sorted in Step 1.

Step 3: Let the first m reordered components ofπ
equal 1, the secondm components equal 2, and so
on.

For instance, suppose in a 2-job, 2-machine problem
X = (0.2, 0.7, 0.8, 0.4). Then usingAlgorithm 2 we
would obtainπ = (1, 2, 2, 1).

The operation-based permutation represents the
operation priorities for constructing a parameterized
active schedule. A component ofπ with a valuei
stands for jobJi. Thejth occurrence ofi in π refers to
thejth operation of jobJi, that is, toOij . The priority
of the operation is determined simply by the order of
the components ofπ. The operation corresponding
to thekth component ofπ has a higher priority than
that corresponding to the(k + 1)th component. Thus,
referring to the above example, the interpretation of
π = (1, 2, 2, 1) is that the (decreasing) order of
priority of the operations isO11, O21, O22, O12.

In OSP-DECODE, the operation priorities are
determined from the particle position using the con-
dition that if xd < xb then the priority ofOd will
be larger than that ofOb. For example, ifX =
(0.1, 0.3, 0.7, 0.4) then the (descending) order of pri-
orities isO1, O2, O4, O3.

www.scienceasia.org

http://www.scienceasia.org/2009.html
www.scienceasia.org

92 ScienceAsia35 (2009)

Constructing a parameterized active schedule by
using predefined operation priorities

All decoding procedures will schedule one operation
at a time. An operation is schedulable if it has not yet
been scheduled and all the operations which precede it
have already been scheduled. For OSP-DECODE, the
latter condition is not required, as OSP does not have
operation precedence constraints. We letSt denote the
set of all the schedulable operations at staget, and let
Φt denote the partial schedule of the(t−1) scheduled
operations. We also introduce the input parameter
δ ∈ [0, 1] which is the bound on the length of time
a machine is allowed to remain idle. A decoding
procedure withδ = 0 generates non-delay schedules
whereas one withδ → 1 generates active schedules.

All decoding procedures will iterate formn stages
since there aremn operations. Note that in the
following algorithms we useOd to denote eitherOk

or Oij .

Algorithm 3 To construct a parameterized active
schedule of JSP-DECODE and OSP-DECODE.
Step 1: Let t = 1 and make the setΦ1 empty.
Step 2: Find σ∗ = minOd∈St{σd} and φ∗ =
minOd∈St{φd} where σd is the earliest time that
operationOd in St could be started andφd is the
earliest time that it could be completed. Henceφd =
σd + τd, whereτd is the processing time ofOd.

Step 3: Select the highest priority operationO∗ ∈ St

such thatσd 6 σ∗ + δ(φ∗ − σ∗).
Step 4: CreateΦt+1 by addingO∗ to Φt.
Step 5: If a complete schedule is constructed, stop.
Otherwise, increaset by 1 and go to Step 2.

Algorithm 4 To construct a parameterized active
schedule of MPM-DECODE.
Step 1: Let t = 1 and make the setΦ1 empty.
Step 2: Find σ∗, φ∗, and also the lowest index ma-
chineM∗ on whichφ∗ occurs.

Step 3: Select the highest priority operationO∗ ∈ St

such thatO∗ is in M∗, andσd 6 σ∗ + δ(φ∗ − σ∗).
Step 4: CreateΦt+1 by addingO∗ to Φt.
Step 5: If a complete schedule is constructed, stop.
Otherwise, increaset by 1 and go to Step 2.

PERFORMANCE EVALUATION

We used the same parameter values for testing the
performance of all three algorithms. The following
parameter values were the same as those used in Ref.
11: K = 40, na = 7, cp = 0.5, cg = 0.5, cl = 1.5,
cn = 1.5, Vmax = 0.25, Xmax = ∞, and

w(t) =

{
0.9− 0.5(t− 1)/999, 1 > t > 1000,

0.4, t > 1000.

After experimenting with 25 combinations of values
of qc andδ (both ranging from0.0 to 0.8 in steps of
0.2) we choseqc = 0.2 and δ = 0.4 as these gave
the best results. As in Ref.17, we usedqu = 0.7.
It was also checked that this value was optimal when
compared with nearby values. The initial population
was given byvid(1) = 0 and xid(1) = u. The
stopping criterion (seeAlgorithm 1) was if t = T or
a lower bound solution is met. We choseT = 2000
since the solutions rarely improve fort larger than this.

The three proposed algorithms were tested on
benchmarks using a C# program under Windows on a
1.60 GHz Pentium M processor. For each benchmark,
the result from the best of ten runs was taken as the
final result.

Performance of JSP-PSO

To evaluate the performance of JSP-PSO, we used
36 well-known benchmark instances; ft06, ft10, ft20
from Fisher and Thompson20, and the rest from
Lawrence21. The results of the execution of JSP-PSO
are compared to the optimal solutions and the best re-
sults taken from an efficient ant colony optimization8

in Table 1. JSP-PSO can find the optimal solutions
to 17 out of 33 instances, and it outperforms the ant
colony optimization in 13 instances, and does worse
than it in only 9 instances.

For anm×n instance, the average computation
times in seconds (in parentheses) are as follows: 6×6
(0.1), 5×10 (10.5), 5×15 (0.1), 5×20 (7.4), 10×10
(39.2), 10×15 (71.1), 10×20 (126.2), 15×15 (157.2).

Performance of MPM-PSO

To test the performance of MPM-PSO, this study used
23 benchmark instances taken from the RDATA set
of Jurisch22. These MPMJSP benchmark instances
were modified versions of the standard JSP bench-
mark instances21,22. The results of MPM-PSO were
compared to the best found solutions of a tabu search
algorithm, namely NB1-1000, taken from Jurisch22

(Table 2).
Table 2demonstrates that MPM-PSO can gener-

ate the optimal solutions of only 5 out of 23 instances.
Also, none of the optimal solutions found are of
instances of large problems. However, it can be
observed that the generated solution values are very
close to the optimal solution values for almost all
problem sizes, in particular 5×15 and 5×20. MPM-
PSO performs better than the tabu search algorithm in
6 instances, and worse in 11 instances.

The average computation times are 6×6 (0.1),
5×10 (40.7), 5×15 (84.3), 5×20 (144.9), 10×10
(127.3).

www.scienceasia.org

http://www.scienceasia.org/2009.html
www.scienceasia.org

ScienceAsia35 (2009) 93

Table 1 Performance evaluation of JSP-PSO on benchmark
problems.

Instance m×n Optimal Result from Result from
Solution Ant8 JSP-PSO

Value

ft06 6×6 55 55 55∗

ft10 10×10 930 944a 951
ft20 5×20 1165 1178 1191
la01 5×10 666 666 666∗

la02 5×10 655 658 663
la03 5×10 597 603 603
la04 5×10 590 590 611
la05 5×10 593 593 593∗

la06 5×15 926 926 926∗

la07 5×15 890 890 890∗

la08 5×15 863 863 863∗

la09 5×15 951 951 951∗

la10 5×15 958 958 958∗

la11 5×20 1222 1222 1222∗

la12 5×20 1039 1039 1039∗

la13 5×20 1150 1150 1150∗

la14 5×20 1292 1292 1292∗

la15 5×20 1207 1240 1207∗

la16 10×10 945 977 959
la17 10×10 784 793 784∗

la18 10×10 848 848 848∗

la19 10×10 842 860 857
la20 10×10 902 925 910
la21 10×15 1046 1063 1074
la22 10×15 927 954 944
la23 10×15 1032 1055 1032∗

la24 10×15 935 954 971
la25 10×15 977 1003 987
la26 10×20 1218 1308 1224
la27 10×20 1235 1269 1280
la29 10×20 1152 1162 1228
la30 10×20 1355 1411 1355∗

la36 15×15 1268 1334 1307
la37 15×15 1397 1457 1456
la38 15×15 1196 1224 1263
la40 15×15 1222 1269 1251

* indicates optimum solution value
a bold indicates algorithm beats the other

Performance of OSP-PSO

The performance of OSP-PSO was evaluated through
the set of standard OSP test instances given by Tail-
lard23. Table 3compares the best solution found over
ten runs from OSP-PSO to the best solution found by
a particular genetic algorithm4 for each instance. The
results of the performance evaluation of OSP-PSO,
based on Taillard’s instances, are presented inTable 3.

OSP-PSO returns optimal solutions for 17 in-

Table 2 Performance evaluation of MPM-PSO on bench-
mark problems.

Instance Optimal Result from Result from
Solution Tabu Search22 MPM-PSO

Value

ft06 r 47 47 47∗

ft10 r (707)a 737 736
ft20 r (1026) 1028 1026∗

la01 r (571) 574 578
la02 r (530) 535 534
la03 r (478) 481 482
la04 r 502 509 507
la05 r 457 460 577
la06 r (800) 801 803
la07 r (750) 752 753
la08 r (766) 767 766∗

la09 r (854) 859 856
la10 r (805) 806 808
la11 r 1071 1073 1074
la12 r (937) 937 937∗

la13 r 1038 1039 1039
la14 r 1070 1071 1071
la15 r (1091) 1093 1093
la16 r 717 717 752
la17 r 646 646 648
la18 r 666 674 691
la19 r (703) 725 733
la20 r 756 756 756∗

a value in parentheses represents the best known solution
– no provable optimal solution exists

stances from the total of 30 instances. OSP-PSO per-
forms better than the genetic algorithm in 14 instances
and worse in 5 instances.

The average computation times are 5×5 (6.5),
7×7 (24.8), 10×10 (90.7).

CONCLUSIONS

This paper presented three algorithms, using GLN-
PSOc as their framework, for solving the job-shop
scheduling problem, the job-shop scheduling prob-
lem with multi-purpose machines, and the open-shop
scheduling problem. Based on the computational ex-
periments, the proposed algorithms are better than the
existent algorithms on many instances, thus demon-
strating that GLN-PSOc is a valid method for solving
various types of scheduling problems. It could be
applied to other hard-to-solve scheduling problems,
such as flow-shop scheduling problem, by developing
the decoding procedures which match those problems.

www.scienceasia.org

http://www.scienceasia.org/2009.html
www.scienceasia.org

94 ScienceAsia35 (2009)

Table 3 Performance evaluation of OSP-PSO on benchmark
problems

Instance Optimal Result from Result from
Solution Genetic OSP-PSO

Value algorithm4

5×5 1a 300 301 300∗

5×5 2 262 263 262∗

5×5 3 323 335 326
5×5 4 310 316 310∗

5×5 5 326 330 329
5×5 6 312 312 312∗

5×5 7 303 308 303∗

5×5 8 300 304 301
5×5 9 353 358 354
5×5 10 326 328 326∗

7×7 1 435 436 435∗

7×7 2 443 447 444
7×7 3 468 472 472
7×7 4 463 463 463∗

7×7 5 416 417 416∗

7×7 6 451 455 453
7×7 7 422 426 425
7×7 8 424 424 424∗

7×7 9 458 458 458∗

7×7 10 398 398 398∗

10×10 1 637 637 639
10×10 2 588 588 588∗

10×10 3 598 598 601
10×10 4 577 577 577∗

10×10 5 640 640 641
10×10 6 538 538 538∗

10×10 7 616 616 616∗

10×10 8 595 595 595∗

10×10 9 595 595 597
10×10 10 596 596 597

a m×n a is theath instance of am-machine,n-job task

REFERENCES

1. Croce F, Tadei R, Volta G (1995) A genetic algorithm
for the job shop problem.Comput Oper Res22, 15–24.

2. Gen M, Cheng R (1997)Genetic Algorithms and Engi-
neering Design, John Wiley & Sons, New York.

3. Gen M, Tsujimura Y, Kubota E (1994) Solving job-
shop scheduling problem using genetic algorithms. In:
The 16th International Conference on Computers and
Industrial Engineering, Japan, pp 576–9.

4. Prins C (2000) Competitive genetic algorithms for the
open-shop scheduling problem.Math Meth Oper Res
52, 389–411.

5. Blum C (2005) Beam-ACO – hybridizing ant colony
optimization with beam search: an application to open
shop scheduling.Comput Oper Res32, 1565–91.

6. Blum C, Roli A, Dorigo M (2001) The hyper-cube
framework for ant colony optimization. In: Proceed-

ings of the Fourth Meta-heuristics International Con-
ference, Porto, pp 399–403.

7. Colorni A, Dorigo M, Maniezzo V, Trubian M (1994)
Ant system for job-shop scheduling.Belg J Oper Res
Statist Comput Sci34, 39–53.

8. Udomsakdigool A, Kachitvichyanukul V (2008) Mul-
tiple colony ant algorithm for job-shop scheduling
problem.Int J Prod Res46, 4155–75.

9. Kennedy J, Eberhart RC, Shi Y (2001)Swarm Intelli-
gence, Morgan Kaufmann, San Francisco.

10. Pongchairerks P, Kachitvichyanukul V (2005) A non-
homogeneous particle swarm optimization with multi-
ple social structures. In: Proceedings of International
Conference on Simulation and Modeling, Thailand,
A5-02.

11. Pongchairerks P, Kachitvichyanukul V (2006) Parti-
cle swarm optimization algorithm with multiple social
learning structures. In: Proceedings of the 36th CIE
Conference on Computers & Industrial Engineering,
Taiwan, pp 1556–67.

12. Clerc M (2006)Particle Swarm Optimization. ISTE
Ltd, California.

13. Bean JC (1994) Genetic algorithms and random keys
for sequencing and optimization.ORSA J Comput6,
154–60.

14. Bierwirth C, Mattfeld DC (1999) Production schedul-
ing and rescheduling with genetic algorithms.Evol
Comput7, 1–17.

15. Storer RH, Wu SD, Vaccari R (1992) New search
spaces for sequencing problems with application to job
shop scheduling.Manag Sci38, 1495–509.

16. Mattfeld DC, Bierwirth C (2004) An efficient genetic
algorithm for job shop scheduling with tardiness objec-
tives.Eur J Oper Res155, 616–30.

17. Gonçalves JF, Mendes JJM, Resende MGC (2005) A
hybrid genetic algorithm for the job shop scheduling
problem.Eur J Oper Res167, 77–95.

18. Brucker P, Schlie R (1990) Job-shop scheduling with
multi-purpose machines.Computing45, 369–75.

19. Veeramachaneni K, Peram T, Mohan C, Osadciw LA
(2003) Optimization using particle swarms with near
neighbor interactions. In: Genetic and Evolution-
ary Computation – GECCO 2003, Springer, Berlin,
pp 110–21.

20. Fisher H, Thompson GL (1963) Probabilistic learning
combinations of local job-shop scheduling rules. In:
Muth JF, Thompson GL (eds)Industrial Scheduling,
Prentice Hall, Englewood Cliffs, pp 225–51.

21. Lawrence S (1984) Resource constrained project
scheduling: an experimental investigation of heuristic
scheduling techniques. Tech Rep, GSIA, Carnegie Mel-
lon Univ.

22. Jurisch B (1992) Scheduling jobs in shops with multi-
purpose machines. PhD thesis, Universität Osnabr̈uck.

23. Taillard ED (1993) Benchmarks for basic scheduling
problems.Eur J Oper Res64, 278–85.

www.scienceasia.org

http://www.scienceasia.org/2009.html
http://dx.doi.org/10.1007/s001860000090
http://dx.doi.org/10.1007/s001860000090
http://dx.doi.org/10.1007/s001860000090
http://dx.doi.org/10.1007/3-540-45105-6_10
http://dx.doi.org/10.1007/3-540-45105-6_10
http://dx.doi.org/10.1007/3-540-45105-6_10
http://dx.doi.org/10.1007/3-540-45105-6_10
http://dx.doi.org/10.1007/3-540-45105-6_10
www.scienceasia.org

