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ABSTRACT: A new deterministic numerical method for solving the kinetic Boltzmann equation for Maxwellian molecules

with cylindrical symmetry in velocity space is developed. Using the splitting method with respect to physical processes,
the Boltzmann equation is decomposed into the space-homogeneous Boltzmann equation and the transport equation. The
transport equation is solved by either Lax-Wendroff or upwind schemes. For Maxwell's model, the space-homogeneous
Boltzmann equation is simplified by taking the Fourier transform with respect to velocity. Because of the cylindrical
symmetry in velocity space, the three-dimensional Fourier transform is equivalent to a one-dimensional Fourier transform
and a Hankel transform. An exponential grid in velocity space allows the application a fast Fourier transform algorithm to
compute the Hankel transform. The space homogeneous Boltzmann equation in Fourier space is solved by the Runge-Kutta
scheme. The new method is applied to solving the heat transfer problem between parallel plates.

KEYWORDS: kinetic theory, Maxwellian model, Fourier transform, Hankel transform, heat transfer problem

INTRODUCTION multi-dimensional nonlinear operator, called the colli-
sion integral, and its resulting complexity excludes the

The classical Boltzmann equation is the main mathpossibility of obtaining exact solutions and generates
ematical tool of the kinetic theory of gases On formidable difficulties for the application of numerical
the one hand, this equation serves for the axiomatinethods.
construction of continuous medium models such as Two distinct groups of numerical methods for
the gas dynamics, Navier-Stokes, and Barnette equsslving the Boltzmann equation have been developed
tions. At the same time, asymptotic solutions ofa general review of the methods and relations be-
the Boltzmann equation enable one to obtain the exween them can be found in Re8). The first group
plicit form of transport coefficients such as viscositycombines methods of direct modelling type such as
thermal conductivity, and diffusivity. On the otherthe direct simulation Monte-Carlo (DSMC) metiHfod
hand, these equations are used for describing rarefi€tle rapid expansion of these methods in the last three
gas flows. Rarefaction is quantified by the Knudsedecades was motivated by the development of space
numberKn = /L, where\ is the mean free path of aerodynamics. They are based on the stochastic nature
the molecules and. is the characteristic scale of theof the elementary processes of gas molecule kinetics.
flow. The application of kinetic equations is confined=rom the computational point of view, the principal
to systems for whicld.1 < Kn < 10.0%. These flows feature of these methods consists of using Monte-
are realized in a wide range of scales from galacti€arlo procedures for modelling molecular scattering
to microscopic. Examples include the so-called jetdescribed by the collision integral.
and turbulence piles in the far reaches of the cosmos, The second group comprises regular (determin-
flows over spacecraft during their descent through thistic) methods of direct numerical solution of the
upper atmospheres of planets, flows in vacuum cherBoltzmann equatioh Such methods are exclusively
ical reactors, overflowing aerosol particles of microrbased on well-known algorithms of numerical analysis
scale in problems of ecology, flows in micro-electricakuch as spline interpolation, finite-difference or finite-
machine systems, and scattering of ultrasonic waves/olume schemes, and quadrature formulas.

The Boltzmann equation is an integro-differential  The DSMC methods have indisputable priority in
equation. Its characteristic feature is the presence ofagplied problems of rarefied gas dynamics where one
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needs to compute fluxes of mass, impulse, and energy In the present paper, a new deterministic method
on surfaces over which fluid is flowing. However,is described. Selection of numerical procedures of
regular methods allow, in principle, the finding oftransport and relaxation stages are presented and
solutions of the Boltzmann equation at a wide rangdiscussed. Comparison of test results with exact
of molecular energies which are beyond the DSMGolutions is given. As a first example of the application
method possibilities. This is very important in com-of the developed method, the problem of heat transfer
puting threshold processes in shock waves, such between parallel plates is solved.

those involving chemical reactions with a large acti-

vation energy. Moreover, good deterministic method§HE BOLTZMANN EQUATION AND

give an opportunity to obtain very precise standarTATEMENT OF PROBLEM

numerical solutions. They are necessary, in particulafe Boltzmann equation describes the evolution of
for validation of new modifications of DSMC meth- o efied gas in terms of a molecular distribution func-
ods which often deviate from strict adherence t0 thg,, \without external forces, the Boltzmann equation

Boltzmann equation. o of a monatomic gas can be written'ds
A scheme of a deterministic spectral method for

the Boltzmann equation with Maxwellian molecules of

has been proposéd The algorithm is based on the o +v-Vif =Q(f ]). )
splitting method with respect to physical processes

with stages of space-free molecular transport andere x € R3(x) is the space coordinatey €
space-homogeneous collision relaxation. The morB3(v) is the molecular velocity, and = f(x,v,t)
laborious stage of relaxation is based on the Fouriés the distribution function, which defines the mean
transform, which makes the algorithm optimal withmolecular density at timein the differential volume
respect to the amount of computation. The numbelx dv near a point(x, v) of six-dimensional phase
of computations is estimated 8% N log, N), where spaceR®(x) x R*(v). If the distribution functionf =

N is the number of elements in the computing arrayf (v, ) is independent of the variahie one deals with
Such optimal computational cost is determined bghe space-homogeneous Boltzmann equation. The
using an exact Fourier representation of the collisioterm Q(f, f) is called the collision operator and is
integral. This representation is a two-fold integral ovedefined by

angle scattering variables which substantially reduces

the volume of computations. Such transformation is Q(f, f)(x,v,t)

only possible for a collision integral with Maxwellian

molecule$. Various deterministic algorithms for = / / B(w,0)[f' fi — fAildndvy, (2)
the Boltzmann equation with other molecular models RS

have been proposéd®. However, the computational where f' = f(x,v',t), f| = f(x,vi,t), f =

costs of these algorithms is considerably higher tha}a(xw’t)’ fi = f(x,v1,t), v and v, are the pre-

the algorithm presented in this paper. ~ collision velocities of a colliding pair of molecules!
_ Inthis paper a regular numerical method of direChndy/ are the corresponding velocities after collision,
integration for the case of one-dimensional flows ignqw — v — v, is the relative velocity of the two

developed. Such flows have axial symmetry in moleGyglecules before collision. The parameteis the
ular velocity space. Despite obvious restrictions ther§cattering angle betweem andw’ = v/ — v/, dn

are a great number of problems of this type. Among the differential surface element on the unit sphere
them are classical problems of gas kinetic theory sucke _ {n € R3, |n| = 1}. The velocities of colliding

as heat and mass transfer (recondensation) betw&ggjecules satisfy the microscopic momentum and
parallel plates, or the problem of a plane shock WaVgnergy conservation laws

structure. Also, there is a set of problems of practical

interest such as the investigation of evaporation and,’ v/ = v4vy,  |v/|>4+|v}|? = [v|*+|v1]%. (3)
nucleation of spherical drops, which are active centres

in the formation of smog and fog as well in the procesghe post-collision velocities are defined by

of condensation in different technical plants. Other

examples include energetic particles escaping from v/ = Z(v4+vi+|v—vin)
spherical planet atmospheres, absorption and conden- ’
sation processes on cylindrical jets, and burnout of
cylindrical cathodes of electron devices.

— Do =

v = §(V+V1 —|v —vi|n).
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The kernelB is a scattering function which has theThe Fourier transformp(x, k, t) of the distribution

form function f(x, v, t) in velocity space is defined as
B(w,0) = wo(w, cosb), 4

where the functions : Rt x [-1,1] — Rt is a o(x,k, 1) :/ TR f(x v t)dv.  (14)

differential cross-section. The scattering functiBn R3(v)

characterizes details of the binary interactions depenEjJ—Sing the Fourier transforml@), the problem 13)

ing on the physical properties of the gas molecules. for Maxwellian molecules can be transformed to the
Two special cases of the scattering functiBn f

9
are used in the paper. The main model is that oPrm
Maxwellian molecules with the scattering function  9p(x, k, )
B(w,9) = g(cos b), (5) ot

k + kn k—kn
which does not depend on the modulus of the relative = [ |¥{* 7 e\ x5t
velocity w. The other is the model of so-called “hard

(15)

sphere” molecules with the scattering function —o(x,k, t)p(x,0, t)] g(cos ) dn,
d? )
B(w,0) = W ®)  o(x,k,0)= f(x,v,0)e 27Vl gy,
R3(v)

whered is the molecular diameter.

All macroscopic properties of a gas can be definell we assume that the distribution function possesses
in terms of f. In particular, the density, mean bulk cylindrical symmetry with respect to the velocity
velocity, and temperature of the gas are given respeeariable v, i.e., f(x,v,t) = f(x,vz,v,,t) Where

tively by v = (vg,vy,v.) andv? = v + v2, then the Fourier
transform 4) of f(x,v,t) also possesses cylindrical
n(x,t) = f(x,v,t)dv, (7) symmetry® and
R3(v)
1 o0 i o0
u(x,t) = 7/ vf(v)dv, (8) o(ky, kryt) :27r/ e_l%k””/ Jo(2mk,vy)
n(x,t) R3(v) —o0 0
1
T(X,t) _ / |V _ u|2f(v) dv, (9) X Urf('Uam UT) dv, dvg, (16)
3”(X,t>R R3(v) [es} - 00
_ f vz, v) = 27r/ T “’1/ Jo(2mk,v,)

whereR is the gas constant. —o0 0

The Boltzmann collision operator has the fol- X Vpp(ky, kr) Ak dkg. a7
lowing fundamental properties of conserving mass,
momentum, and energy: The inner integrals in these formulas are the Hankel

transforms with respect to the corresponding vari-
- Q(f, f)dv =0, (10) ables. Because the variablesand¢ are not invoked
R3(v) while taking the Fourier transform in velocity space,
/3( )vQ(f, f)dv =0, (11) Lonr the sake of simplicity they are omitted from now
R3(v .

9 Let us consider in X5) the Fourier transform
/R vI"Q(f, f) dv = 0. (12)  (14) of the collision integralQ(f, f) which will be

) ] denoted by) (¢, ¢). Sincep(k) possesses cylindrical
For the space homogeneous Boltzmann equation theggnmetry, one can write
properties give us conservation of the gas dynamic pa-
rametersu(t), u(t) andT'(t) during the time evolution (k + kn) <k$ + kng |k, £+ kn, > (18)
(70 =

2

of the distribution functionf(v,t) from any initial 9 92 '
distribution fo(v).

Consider the Cauchy problem for the space howvhere
mogeneous Boltzmann equation

f (x,v,t) ‘kl;kn :%\/k3+k2\nr|2ﬁ:2kkr~nr
g = QU NV, (13)
f(x,v,0) = fo(x,v). wherek, = kye, + k.e.,n, = nye, + ne..
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For simplicity, the case of Maxwellian moleculesboundary problem has the fofm
with isotropic scattering(cos §) = og /4 is consid-

ered further. After some calculations it can be shown 97 + Uxai = @/ / [F(vV)f(¥))
that ot or 4 R3(v) J 82 (20)
= f(v)f(v1)] dndvy,
. oo % [* 0) = f0
Q(4p7@) = ?0/0 A [90(—0—,—&-)90(—.,—) f(l‘,’UMUT, ) f (m,vm,vr), .
2nkT,\ 2
+ P+,—)P(—+) — 2(,0(]{19;, kr)@(o)] dpda, f(L/Q,Ux,UT) =Ny ( m +)
19
( ) « e—m(’z)§+1)ﬁ)/2kT+7 (Um < 0),
h sk \E O
where f(—L/Q,’Uw,UT)Zn_( nm_)

ke ® kp

fr— ><
@(@,@) = SO< 2 5

e—m(vi—&—vf)/ﬂeT,’ (Uw > 0)

1 Here k is the Boltzmann constanty is the mass
5\//%2- + k(1 — p?) © 2krk/1 — p? cos a), of the molecules, and.,, 7. andn_, T_ are, the
number densities and temperatures at the top and
_ ) _ bottom plates, respectively. Their values depend on
in which® and® can be either- or —. _ the physical conditions on the plates such as sorp-
The algorithm for solving the Boltzmann equatlontion’ evaporation, impenetrability, momentum and
developed in this paper assumes that the distributiQthergy accommodation. For curvilinear boundaries
function depends on one space coordinatend e differential operator of the Boltzmann equation is
that the mean gas velocity is directed along this e complicated than ir20) and contains additional
coordinate. In this case the distribution function angymqt-
its Fourier transform possess the cylindrical symmetry  ~paracteristic values for the dimensionless form
considered above. Boundaries can be composed gf o initial-boundary problem,20) and @1), are
infinite parallel plates, coaxial circular cylinders, orchosen as follows: fo = A(KT_/m)=3/2, t, =
concentric spheres. In all these cases the problem ca KT /m)~Y/2, v = Ljty = (kT_/m)"/2, zo =
be stated on finite or semi-infinite intervals. Inthe firsty " arer is the mean number density of a gas in the

case the infinite intervat € (—o0, 00) can also be segmenf—L/2, L/2], and is defined as
considered. In cylindrical and spherical geometries, ’ '

the inner boundary can be replaced by-aource or 1 [L/2
drain. n=7 /

In this paper the study is restricted to the case of
plane geometry. For definiteness let us consider a gaéeren(x) is the local number density).
flow between two parallel infinite flat plates which are  The dimensionless variables are related to the
separated by a distande(Fig. 1). In this case the original variables byf(t,x,v) = fof(f,%,V), t =
distribution functionf(x, v,¢) only depends on the ¢,i, v = wvyd, + = zo%, T = T_T. Using these
variablesz, v,, v, andt, and the classical initial- relations, 20) and @1) become

R - [ [iensen

n(z)dz,
—L/2

% 41 Kn
R3(v) 52 (22)
= f(v)f(v1)ldndvy,
f(j,f}wﬁr,()) = fo(i7f}x’@r)’
zZ
L Y‘/ u ~ B _% 7(52-}-53)
FGttp) =iy (20T5) Te e (5, < 0),
(23)
52 452
Fig. 1 Flow between two flat plates. f(_%7 Vg, Up) = ﬁ_(zﬂ)—%e—%’ (T, > 0),
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whereKn = 1/(oqfotovg) is the Knudsen number. was used. The sufficient monotonicity conditions are
From now on we drop the tildes. ,
2| iy = Fivig | > fivrag — 2f8is

+ f]?—l i Vg > 0,
SPLITTING SCHEME AND NUMERICAL : § Je-1igl
PROCEDURES 2| fivrg — fiag | > fenig — 2fka

n
For solving the problem formulated above, the split- + iy |} ve <O,

ting method with respect to physical processes is usederec — 70,/ he is the Courant numbet, is the time
The solution of the initial-boundary problen22), step,h, is the space step, arid 7, and;j are indices
(23) in each time intervalt,,, t, + 7] is obtained by along the coordinates, v,, andv,, respectively.
SUCCESSiVE'y SO'Ving the initial-boundary problem Oi:or v, = 0, the solution remains the same as the
the transport equation initial conditions. Since both schemes are explicit
. o with respect to time, it is necessary to choose the
fo = —Af, f(z,vg,v0,tn) = f(z,vg,v,,t), (24) ratio 7/h, such that the Courant stability condition
T|Vz|max/he < 1 is satisfied. In contrast to the
and the Cauchy problem of the space-homogeneoU@Wind scheme, the Lax-Wendroff scheme is second
Boltzmann equation order, havingD(2, h2) errors, but is not monotone.
Both (27) and @8) applied to the transport stage
£r=Qf. f), f(@,ve, 00, t) = fla,vg, 00, b, +7), (24) were tested on the exact stationary solution of the
(25) Boltzmann equation2?) with boundary conditions of
where A is the differential operator on the left-handtyP€ @3). In dimensionless variables this solution has
side of the Boltzmann equatio2) with boundary the form

conditions 23). A F(& va,00), vy < 0,
For computingf(z, v,t, + 7) the Fourier trans- 1
form of the space-homogeneous Boltzmann equatiofy (x, v,, v,) = H(=3, 00, 0r), ve > 0,
) ’ 1 1 1
(15) is used: 3 [F(35ve,00) + (=53, vas00)]
o1 = Q. ). (26) "5
The use of the fast Fourier transform (FFT) proce\-Nhere
dure'! at the stage of collision relaxatio@%) results ) 2 s @242
in an algorithm requiringD (N log, N) operations, f(3502,00) = 1+v 2nTy) 2e % vy <0,
whereN is the number of grid points in the calculation 2 s (W2402)
domain. (=%, v, 0) = (2m)72e” T L up >0,

. . . . . 1+v
During numerical integration of2d) it is neces-

sary to conserve positive definiteness of the distrib@"d > = n/n_. The solution 29) corresponds to
tion function f(z, v, t, + ) which is related to the @symptotic free molecular floby whereKn — 00,
monotonicity property of the finite-difference scheme@nd it only depends on the parametefThe following
The upwind scheme possesses such a profetyt  relations hold:

it is first order int andz, and because of the scheme 1

viscosity it can bring in significant errors. Therefore V= \/TTF’

the following recommendatiofrd were used. If suffi- 1

cient monotonicity conditions were satisfied, then then(z,,) = flap,v)dv==(ny +n_) =1,
Lax-Wendroff scheme R 2

nU, = / vz fo(Tn,v)dv =0,
n n C n R3
k7+31 = frij — §(fk+1,i,j — fi1i4) 9
T(x,) = ﬁ/ V2 f(zn,v)dv = Qm,
n n n n\xry
(fig1iy = 2fki; + fimiay), (27)

q$<$n) = %/}%3 'U:vVQf(wnvv) dv = _2\/2(11/_2V)'

Parameters used in the tests were= % 1, 2,

=R (s — TR (28) T =001, by = 45, 8 < v, < 8,0 < v <8,

+

| Qo

was applied. Otherwise the upwind scheme
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The numbers of sample points for both theandv,  the time step- = 0.05 were applied. The number of
variables were 128. For the chosen parameters, teample points on the variables of integrationy in
stability condition of the Lax-Wendroff and upwind the collision integral 19) (over the unit sphere) were
schemes is satisfied, i.e., the Courant numberis both 16. The integrands were evaluated using two-
0.96 < 1. dimensional spline interpolation.

Analysis of calculations shows that the Lax-  Most of the tests were made with the Bobylev-
Wendroff and upwind numerical schemes give prad<rook-Wu (BKW) solutior®
tically the same sufficiently satisfactory results for 3/2 ,
the mesh distribution function. The greatest errors in F(t,v) = (2m) ef%f [1 T L

hydrodynamic parameters were obtained for= 2. (1—6)3/2 1-6

The corresponding values for= 1.0 are presented in (2r)?2 5, 3 _4/6
Table 1 The errors mostly result from the quadrature (2(1_9)” - 2) ] , 0=04e".
formula employed despite it being based on the spline (32)

interpolation.
Fourier and Hankel discrete transforms were uselts combined Fourier-Hankel transform has the form

for solving the Cauchy problem2§) forward and 2 o /o

back. Special attention was paid to the discrete Hankel p(k, t) = (1 — 0.2k%e~"/6)e= 2 T0-2k7e""7 " (33)

transform for which standard code is absent. The o ]

algorithm proposed iHf was chosen. Applying the Itis |mpor_tant that for 83) the collision integral is not

exponential change of variablds = kee®, v, — 2€r0, butis

voe~ Y, the initial Hankel transform . 0.04

Qey) = =5 ke

Calculations showed that the second and fourth
order schemes took an unreasonable amount of com-
puting time. Thus, for further calculations, the first

0o A order Runge-Kutta scheme was chosen. The essen-
g(z) = 27r/ e f(y)Jo(2mkouoe®¥)dy (31) tial component of the realization of the Runge-Kutta
- scheme both with respect to the volume of calculations

which can be effectively computed using the standar@nd computational precision is the computing of the
FFT numerical procedurés To precisely calcu- collision integral. Therefore the computing procedure

late the high-energy tail of the distribution function,for the collision integral was separately tested. Com-

the interval of the velocity variables was chosen agarison of the results of the calculations with the exact
max < Vs < Vmans 0 < U < Vsnaes WIth O = solution in the relative...-norm of error is presented

8. For computing the fast Hankel transfor@il) we in Table 2 Similar results were obtained for the
setvy = Umax, K = Umax = Vo, andu,, . = Maxwell solution

(027 0z )=t/ (qpy

g(kr) =27 /OOO Urf(vr)J0(27rkrvr> dv, (30)

is reduced to the convolution type integral

Tmax

o = vge” Nr=Dhr where N, is the number of } 1 e
grid points andh, = In(vmax/vr,.,. )]/ (Ny — 1). fvit) = gryare (35)
For the Fourier transform with respect tg the
following values were used which is the stationary solution of the problem and has
) a collision integral equal to zero.
Uy
ho, = =7, CONSERVATION LAWS AT THE
e RELAXATION STAGE
Ny, Ny,
ko € [Kamue Komae) = s — 1o, . ) : For computing the relaxation stage it is very important

to minimize errors in the discrete versions of the con-

In further calculations the numbers of grid points weraervation laws for density, mean velocity (momentum)
N,, = 256 and N, = 2048. and temperature (energy). A conservative method for

The algorithm for solving problen®§), (26) as a the relaxation stage based on a polynomial correction
whole was tested with the well-known exact solutionef the computed distribution function was proposed
of the space-homogeneous Boltzmann equation. For®. Since in the present paper the relaxation stage is
numerical integration with respect to time, the Rungeealculated in the Fourier representati@®); one can
Kutta schemes of first, second and fourth orders withse the correction of the Fourier transfoptk, k.-, t)
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Table 1 Comparison between exact and numerical solutions=atfl .

moments exact xr=—0.5 x = 0.0 z=0.5
n 1 1.00001 0.999998 1.00001
nUy 0 1.05133 x 1073 1.05025 x 1073 1.04382 x 1073
T 1 1.00001 1.00001 1
G 0.398942 0.398958 0.398957 0.398952

Table 2 Comparison between exact BKW and numerical solution (reldtigenorm of error),r = 0.05.

t=r t=27 t =371 t=4r t =57
1Q(,9) — Q(B; P) oo 4.8 x107* 9.5 x 107* 1.4 %1073 1.8 x 1073 2.2 x 1072
lle — &l 2.9 x 107° 5.5 x 1077 8.1x 107° 1.0 x 107* 1.2x107*
If = fllso 1.0x107* 1.9 x 1073 2.7 x 1073 3.5x 1073 4.3 x 1073

proposed in Refl5. In this case it is necessary to re-Substitution of expansiort() into the space homoge-
formulate {)—(9) in terms of the functio(k,, k., t).  neous Boltzmann equatio@%) gives

These relations for density, momentum, and energy n

. n
are M N
2t KnT“L 2KnT (42)
0.0.t) =n(x,t) = Cqi(x 36
#12,0,0,2) n.(x7 ) (@) (36) which has the general solution
Volp=o = —2mieyn(x, t)u(z,t) = Ca(v)e,, (37)
1 1 T T . .
§Asﬁ\k=o = —4n? <2nT + 2nu2) = Cs(x). T.(t) = 3 + (TI(O) — 2) o nt/2Kn (43)

38 . .
(38) The improved procedure for the discrete conser-

In the one-dimensional case,= (U,, 0, 0). vation laws is the following. Let the computation at
Applying Runge-Kutta schemes for solving equatime stepp + 1 start from the relaxation stage. At the

tion (26), the density conservation lavB) holds, but end of the computations at the previous time sigp

there are no discrete analogues 87)(and @8)°. To the values 36)—(38) are used to obtain values of the

improve on this shortcoming, an asymptotic solutiomyrid functionsn?,, nb, U? ., T?, andT? .. These

of the relaxation problen®@) near the zero grid point values are used to improve the values of the distri-

k. = k. = 0 was applied. The Taylor seriesbution function at the grid point$0,0), (+h,,0),

expansion of the functiop(h,, h,.) for smallh, and (0, k1), and(+h,, hy). Using @0), one obtains

h, is

Pl 1(0,0) = nf, (44)

@(t; ha, hr) = (t,0,0) + dpfk=0 P (dhy, 0) = 02, — 2min?, U, (h,)
+ 50%lo + OK). 39 “atp, (U2, ) 2zpe],
whereh,, andh, are the spacings along corresponding ;1 p,) = p?, — 2 2nk TV HI A2, (46)

coordinates of the grid points nearest to zero, and
§ and §? are differentials of first and second ordersFrom the definition ofl’(z,t) and @3), we get
Using the cylindrical symmetry and3§)—(38), one

can obtain TP+ _ §TP _ ptl (47)
r,m 9 m xr,m
t, by, he) = n — 2minUyhy — 2020 [ (Uyhy)? p P T

4 ghaT + Tu(20% — 12)] + O(h%), (40)
For smallr, instead of 48) one can write the asymp-

where . .
totic expansion

(oo} (oo} 1 5
nT, = 27r/ / —cs f(z,t, vz, vp) vy du, dvug.

—eaJo 2 prat = I T e (4 TRT g
(41) zm 4Kn @m 2Kn
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The improved discrete conservation laws are e»
pressed through4@)—(48) by means of symmetric
finite differences which approximate the differential 1201
relations 87) and @8) to O(h2 + h?). 115

For some one-dimensional problems one he
U, = 0. To satisfy this conservation law up @(h2),

1.25

S

1.10 4

n

it is necessary to make 1.05 1
1.00
P (hay 0) = @5 (—hs, 0). (50)
0.95
NUMERICAL EXAMPLE 090 {

To demonstrate the possibilities of the new metho oss
the classical one-dimensional heat transfer proBlen
was calculated. From the computational point of view
it is of interest because all numerical methods usefig. 2 Convergence of the density profiles fdn = ﬁ
in rarefied gas dynamics have been tested on this
problem.

The problem is set as follows. Monatomic gas |
is contained between two parallel plates separate —— =207

—— =407

by a distancel (seeFig. ). The plates have fixed 28— t=cor

T T T T T
-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

T

. =807
temperatureg’ andT’, T_ < T}. Itis assumed that | 2=/~ luir
on the plates complete accommodation of momentu | o=/ = 15"

7=0.01

and energy hold: molecules leaving the plates ha\TzA—
half-space Maxwellian distributions. In dimensionles:
variables, the stationary problem has the forma#) (

with (23). The parameters of the problem are 20

Kn =

1
_ )
nUOL V KT /m 16 . : : . .
0.6 0.4 0.2 0.0 0.2 04 06

wheren is the mean number density, and the ratic
of the temperatures which &, in the dimensionless
form. In this case using impenetrable conditions of th
hard boundary surfaces, the values of the densities

andn. in (23) are given by method based on the described splitting method. The
0 roo time step of the relaxation stage was five times that of
- +/ / f(=2%, vp, v.)vg0, dv, dv, = 0, thetransport stage. In the first set of calculations (with
(2m)3/2 -0 J0 ? Kn = 1) the free molecular solutior?2) was used as
(51) initial data. In the remaining calculations the results

gig. 3 Convergence of the temperature profileskar = 1.

Ny Rl B do. du. — obtained from the previous value of thex were taken
(2n T, )3/ t o Jo F(3,ve, 0r)vsvr dvp dvg = 0. oq e initial data for the smaller Knudsen number.
(52) Convergence of the density profile féfn =

1/2v/2 and the temperature profile féfn = 1 are
Here the values of the distribution functioh are shown in Figs2 and3, respectively. The maximum
obtained by solving the transport equation at each timene values on the graphs correspond to the stationary
step. solutions obtained. Additional control of convergence

In the calculations we useHn = 1, 1/2v/2, was carried out through the behaviour of the profiles

i, and1/20+/2, with T, = 4. Such values of the of the mean velocityl/, and the heat flux,. In
parameters were considered in many papers studyitige stationary solution the mean velocitylis = 0
this problem (see Refl6 and references therein). In and the heat flux is constant. In all calculations these
our calculations the grid parameters coincided witlemands were satisfied to an accuracy|©f || <
the parameters chosen in the tests. The stationat§—2 and||Ag¢. || < 0.15. A relatively large error in
solution of the problem was obtained by an iterativéhe heat flux was obtained at the boundary grid points.
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0.25 24
Aristov et al. (Kng = 1)
Aristov et al. (Kng = 0.1)
Aristov et al. (Kng = 0.01)
present (Kny = 1)
present (Kny = 1/(2v/2))
present (Kny = 0.25)
present (Kny = 1/( 20\[

0.20 4

X -0 P+

0.15 4

~l

0.10

0.05

0.00

Aristov et al. (Kng =
——— present (Kny = %)

1) 0.6 -

-4 2 0 2 4 06 0.4 0.2 0.0 0.2 0.4 0.6

Vi T

Fig. 4 Comparison of the shearing of the distributionrig. 5 Density profiles for different Knudsen numbers.
function forKn = 1.

5
However, at most other points this error did not exceed
1073.

There are numerous data for the one- d|menS|onaI
heat transfer problem with the hard spheres molecular
model (see Refl6 and references therein). This 7°
model is the opposite to the model of Maxwellian

24

molecules with respect to the *rigidity” of molecular + Aistov ot al. (Kns = 1)
collisions. Hence, one can expect satisfactory coinci- A Aristov et al. (Kns =0.1)
) ) ) ) ) ® Aristov et al. (Kng = 0.01)
dence neither for the distribution function nor even for 11 ' present (Kny = 1)
. . . % present (Kny =1/( Z\f)
the profiles of hydrodynamic variables suchrasr’, *  present (Kiy = 0.25)
. . & present (Kny = 1/(20v2))
andq,. Nevertheless, comparison of corresponding o . . . i .

data is useful from the point of view of their qualita- °° 04 02 00 02 04 06
tive behaviour. Shearing of the distribution function, ’
defined by the relation Fig. 6 Temperature profiles for various Knudsen numbers.
flz,v,) = 27r/ f(z,vg, v)v doy, the Maxwellian and hard spheres molecular models:
0
d d
- Sl R fz,v)dv
was compared far = 0 as shown irFig. 4. de /, dx \Jgs (53)
Examples of comparison of hydrodynamic pa- 1
rameters are presented in Fi§saand6. Comparisons = /R3 ECiQi(fa f)dv

were made folKny; = KnS/Qﬁ, whereKny; and
Kng are the Knudsen numbers of the Maxwellian anevhere: = 1 andi = 2 correspond to Maxwellian and
the hard spheres molecular models, respectively. THigrd spheres molecules, respectively,
relation follows from comparison of the dimensionless
forms of the BoItzmanp equation for these rr_10de|s. Q) = / / (f'fl = ffi] dndvy,

One can see that in general, the behaviour of the 8 .Jg2
macroscopic parameters and shearing of the distribu- '
tion function are similar for both models for the Knud- Q2 = /3 /52 v —villf'fi = fAi] dndvy,
sen numbers considered. To explain the differences in
the slopes of the hydrodynamic parameter profiles orendc; = (47 Kn;)™!, co = (v/27 Kny)~!. For the
can derive a corresponding estimation for the densitsomparison it was assumed that = ¢,. Using the
curves. Let us integrate the Boltzmann equation fogeneralized mean value theorem, one can rewsisg (
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1
S, = [U[f(fl)f {Vfﬂ : REFERENCES
0(V1 v, Vi=VL, ) )
v=vevi=vs 1. Kogan MN (1969)Rarefied Gas DynamicsPlenum
Sy = [1 [ffll]} , Press, New York.
vz fo(v) fo(vi) V=9, V1 =V1x 2. Cercignani C (1975)Theory and Application of the
Boltzmann EquatiorElsevier, New York.
:/ / fo(v)fo(vi) dndv; dv, 3. Aristov VV (2001) Direct Methods for Solving the
R3 JR3 JS2

12:/ / fo(¥) fo(v1)|v — vi|dndvy dv.
R3 R3 SQ

Since the Boltzmann brackets are normalized by theg
product of Maxwellian functions it can be shown that

|S1] = |S2| and hence
(d”>
dr /,

(&),

4

(54)

This means that in any one-dimensional problemy.

under the same conditions the slope of the nhumber
density profile for the hard sphere model is greater

than that for Maxwellian molecules. Such behaviour 8.

can be seen ifig. 5.
CONCLUSIONS

A new deterministic numerical method for solving 9

the Boltzmann equation with cylindrical symmetry
in velocity space for the Maxwell molecular model
was developed. The method is based on the splif’-
ting scheme with respect to physical processes. T
main feature of the method is the use of the Fast
Fourier and Hankel procedures which determine g,
computational efficiency of the method estimated as
O(Nlog, N). Code realizing the proposed algorithm

was worked out. All parts of the code were carefully13.

tested on exact solutions. As a sample application of
the proposed method, the classical problem of heat
transfer between two parallel plates was calculated
for a wide interval of the Knudsen numbers.
results of calculations confirmed a good availability of
the created mathematical tools. The developed co
can be applied to many other similar problems of the
gas kinetic theory, some of which were listed at the_L6
beginning of the paper.
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