On Quasi-gamma-ideals in Gamma-semigroups

Ronnason Chinram*

Department of Mathematics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.

* Corresponding author, E-mail: ronnason.c@psu.ac.th

Received 18 Jan 2006
Accepted 10 May 2006

ABSTRACT: The concept of quasi-ideals in semigroups was introduced in 1956 by O. Steinfeld. The class of quasi-ideals in semigroups is a generalization of one-sided ideals in semigroups. It is well-known that the intersection of a left ideal and a right ideal of a semigroup \(S \) is a quasi-ideal of \(S \) and every quasi-ideal of \(S \) can be obtained in this way. In 1981, M. K. Sen have introduced the concept of \(\Gamma \)-semigroups. One can see that \(\Gamma \)-semigroups are a generalization of semigroups. In this research, quasi-\(\Gamma \)-ideals in \(\Gamma \)-semigroups are introduced and some properties of quasi-\(\Gamma \)-ideals in \(\Gamma \)-semigroups are provided.

KEYWORDS: \(\Gamma \)-semigroups, quasi-\(\Gamma \)-ideals, minimal quasi-\(\Gamma \)-ideals, quasi-simple \(\Gamma \)-semigroups.

INTRODUCTION

Let \(S \) be a semigroup. A nonempty subset \(Q \) of \(S \) is called a quasi-ideal of \(S \) if \(Q \cap QS \subseteq Q \) and \(Q \cap SQ \subseteq Q \). Then \(Q \) is a quasi-ideal of \(S \). The concept of quasi-ideals in semigroups was introduced in 1956 by O. Steinfeld (see [1]). The author has studied some properties of quasi-ideals in semigroups (See [2] and [3]).

Example 1.1. Let \(S = \{0, 1\} \). Then \(S \) is a semigroup under usual multiplication. Let \(Q = \{0, 1/2\} \). Thus \(SQ \cap QS \subseteq Q \). Therefore, \(Q \) is a quasi-ideal of \(S \).

A nonempty subset \(L \) of \(S \) is called a left ideal of \(S \) if \(SL \subseteq L \) and a nonempty subset \(R \) of \(S \) is called a right ideal of \(S \) if \(RS \subseteq R \). Clearly, every left ideal and every right ideal of a semigroup is a subsemigroup of \(S \). Next, let \(L \) and \(R \) be a left ideal and a right ideal of a semigroup \(S \). By the definition of quasi-ideals of semigroups, it is easy to prove that \(L \cap R \) is a quasi-ideal of \(S \) (See [4]).

Example 1.2. Let \(Z \) be the set of all integers and \(M_2(Z) \), the set of all \(2 \times 2 \) matrices over \(Z \). We have known that \(M_2(Z) \) is a semigroup under the usual multiplication. Let

\[
L = \left\{ \begin{bmatrix} x & 0 \\ y & 0 \end{bmatrix} \mid x, y \in Z \right\}
\]

and

\[
R = \left\{ \begin{bmatrix} x & y \\ 0 & 0 \end{bmatrix} \mid x, y \in Z \right\}.
\]

Then \(L \) is a left ideal of \(M_2(Z) \), \(R \) is a right ideal of \(M_2(Z) \) and

\[
L \cap R = \left\{ \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix} \mid x \in Z \right\}
\]

is a quasi-ideal of \(M_2(Z) \).

In 1981, the notion of \(\Gamma \)-semigroups was introduced by M. K. Sen (See [5], [6], and [7]). Let \(M \) and \(\Gamma \) be any two nonempty sets. If there exists a mapping \(M \times \Gamma \times M \rightarrow M \), written \((a, \gamma, b) \) by \(a\gamma b \), \(M \) is called a \(\Gamma \)-semigroup if \(M \) satisfies the identities \(a\gamma(b\mu) = (a\gamma b)\mu \) for all \(a, b, c \in M \) and \(\gamma, \mu \in \Gamma \). Let \(K \) be a nonempty subset of \(M \). Then \(K \) is called a sub \(\Gamma \)-semigroup of \(M \) if \(a\gamma b \in K \) for all \(a, b \in K \) and \(\gamma, \mu \in \Gamma \).

Example 1.3. Let \(S \) be a semigroup and \(\Gamma \) be any nonempty set. Define a mapping \(S \times \Gamma \times S \rightarrow S \) by \(a\gamma b \in K \) for all \(a, b \in S \) and \(\gamma, \mu \in \Gamma \). Then \(S \) is a \(\Gamma \)-semigroup.

Example 1.4. Let \(M = \{0, 1\} \) and

\[
\Gamma = \left\{ \frac{1}{n} \mid n \text{ is a positive integer} \right\}.
\]

Then \(M \) is a \(\Gamma \)-semigroup under the usual multiplication. Next, let \(K = \{0, 1/2\} \). We have that \(K \) is a nonempty subset of \(M \) and \(a\gamma b \in K \) for all \(a, b \in K \) and \(\gamma, \mu \in \Gamma \). Then \(K \) is a sub \(\Gamma \)-semigroup of \(M \).

From example 1.3, we have that every semigroup is a \(\Gamma \)-semigroup. Therefore, \(\Gamma \)-semigroups are a generalization of semigroups.

In this research, we generalize some properties of quasi-ideals of semigroups to some properties of quasi-\(\Gamma \)-ideals in \(\Gamma \)-semigroups.
Main Results

Let M be a Γ-semigroup. A nonempty subset Q of M is called a quasi-Γ-ideal of M if $\cap \{ MG \cap \Gamma M \subseteq Q \}$. Let Q be a quasi-Γ-ideal of M. Then $QGM \subseteq MG \cap \Gamma M \subseteq Q$. This implies that Q is a sub-Γ-semigroup of M.

Example 2.1. Let S be a semigroup and Γ be any nonempty set. Define a mapping $\delta : S \times \Gamma \times S \to S$ by $a \delta b = ab$ for all $a, b \in S$ and $\gamma \in \Gamma$. From example 1.3, S is a Γ-semigroup. Let Q be a quasi-Γ-ideal of S. Thus $SQ \cap QS \subseteq Q$. We have that $S^G \cap QS = SQ \cap QS \subseteq Q$. Hence, Q is a quasi-Γ-ideal of S.

Example 2.1 implies that the class of quasi-Γ-ideals in Γ-semigroups is a Generalization of quasi-ideals in semigroups.

Theorem 2.1. Let M be a Γ-semigroup and Q_i a quasi-Γ-ideal of M for each $i \in I$. If $\bigcap_{i \in I} Q_i$ is a nonempty set, then $\bigcap_{i \in I} Q_i$ is a quasi-Γ-ideal of M.

Proof. Let M be a Γ-semigroup and Q_i a quasi-Γ-ideal of M for each $i \in I$. Assume that $\bigcap_{i \in I} Q_i$ is a nonempty set. Take any $a, b \in \bigcap_{i \in I} Q_i$, $m_i \in M$ and $\gamma, \mu \in \Gamma$ such that $m, \mu b = a \gamma m_i$. Then $a, b \in Q_i$, for all $i \in I$. Since Q_i is a quasi-Γ-ideal of M for all $i \in I$, $m, \mu b = a \gamma m_i \in \cap_{i \in I} \Gamma M \subseteq Q_i$ for all $i \in I$. Therefore $m, \mu b = a \gamma m_i \in \bigcap_{i \in I} Q_i$. Thus $M \bigcap_{i \in I} Q_i \cap \Gamma M \subseteq \bigcap_{i \in I} Q_i \cap \Gamma M \subseteq \bigcap_{i \in I} Q_i \Gamma M \subseteq Q_i$. Hence, $\bigcap_{i \in I} Q_i$ is a quasi-Γ-ideal of M.

In Theorem 2.1, the condition $\bigcap_{i \in I} Q_i$ is a nonempty set is necessary. For example, let N be the set of all positive integers and $\Gamma = \{ 1 \}$. Then $\bigcap_{n \in N} Q_n$ is a Γ-semigroup. For $n \in N$, let $Q_n = \{ n + 1, n + 2, n + 3, \ldots \}$. It is easy to show that each Q_n is a quasi-Γ-ideal of M for all $n \in N$ but $\bigcap_{n \in N} Q_n$ is an empty set.

Let A be a nonempty subset of a Γ-semigroup M and $\mathcal{A} = \{ Q \mid Q$ is a quasi-Γ-ideal of M containing A $\}$. Then \mathcal{A} is a nonempty set because $M \in \mathcal{A}$. Let $\{ A \}$ be $\bigcap_{Q \in \mathcal{A}} Q$. $\{ A \}$ is a quasi-Γ-ideal of M. Moreover, $\{ A \}$ is the smallest quasi-Γ-ideal of M containing A. $\{ A \}$ is called the quasi-Γ-ideal of M Generated by A.

Theorem 2.2. Let A be a nonempty subset of a Γ-semigroup M. Then

$$(A)_q = A \cup (M \Gamma A \cap A \Gamma M).$$

Proof. Let A be a nonempty subset of a Γ-semigroup M.

Let $Q = A \cup (M \Gamma A \cap A \Gamma M)$. It is easy to see that $A \subseteq Q$. We have that $M \Gamma Q \cap Q \Gamma M = (A \cup (M \Gamma A \cap A \Gamma M)) \cap (A \cup (M \Gamma A \cap A \Gamma M)) \subseteq Q \Gamma M \cup A \Gamma M \subseteq Q \Gamma M \cup A \Gamma M \subseteq Q \Gamma M \cup A \Gamma M \subseteq Q$. Therefore, Q is a quasi-Γ-ideal of M.

Let C be any quasi-Γ-ideal of M containing A. Since C is a quasi-Γ-ideal of M and $A \subseteq C$, $M \Gamma A \cap A \Gamma M \subseteq C$. Therefore, $Q = A \cup (M \Gamma A \cap A \Gamma M) \subseteq C$.

Hence, Q is the smallest quasi-Γ-ideal of M containing A. Therefore, $\{ A \}_q = A \cup (M \Gamma A \cap A \Gamma M)$, as required.

Example 2.2. Let N be the set of natural integers and $\Gamma = \{ 5 \}$. Then N is a Γ-semigroup under usual addition.

(i) Let $A = \{ 2 \}$. We have that $\{ A \} = \{ 2 \} \cup \{ 8, 9, 10, \ldots \}$.

(ii) Let $A = \{ 3, 4 \}$. We have that $\{ A \} = \{ 3, 4 \} \cup \{ 9, 10, 11, \ldots \}$.

Let M be a Γ-semigroup. A sub-Γ-semigroup L of M is called a left Γ-ideal of M if $MTL \subseteq L$ and a sub-Γ-semigroup R of M is called a right Γ-ideal of M if $RTL \subseteq R$. The following theorem is true.

Theorem 2.3. Let L be a Γ-semigroup. Let L and R be any left Γ-ideal and any right Γ-ideal of a Γ-semigroup M, respectively. Then $L \cap R$ is a quasi-Γ-ideal of M.

Proof. Let L and R be any left Γ-ideal and any right Γ-ideal of a Γ-semigroup M, respectively. By properties of L and R, we have $RTL \subseteq L \cap R$. This implies that $L \cap R$ is a nonempty set. We have that

$$(L \cap R) \cap (L \cap R) \subseteq L \cap R \subseteq (L \cap R) \cap (L \cap R) \subseteq (L \cap R) \cap (L \cap R).$$

Hence, $L \cap R$ is a quasi-Γ-ideal of M.

Theorem 2.4. Every quasi-Γ-ideal Q of a Γ-semigroup M is the intersection of a left Γ-ideal and a right Γ-ideal of M.

Proof. Let Q be any quasi-Γ-ideal of a Γ-semigroup M. Let $L = Q \cup M \Gamma Q$ and $R = Q \cup Q \Gamma M$.

Then $MGL = MGL(Q \cup M \Gamma Q) = MGL \cup MGL \Gamma \subseteq M \Gamma Q \subseteq L$ and $RGM = RGM(Q \cup Q \Gamma M) \subseteq Q \Gamma M \cup Q \Gamma M \subseteq Q \Gamma M \subseteq R$. Then L and R is a left Γ-ideal and a right Γ-ideal of M, respectively.

Next, we claim that $Q = L \cap R$. It is easy to see that $Q \subseteq (Q \cup M \Gamma Q) \cap (Q \cup Q \Gamma M) \subseteq L \cap R$. Conversely, $L \cap R = (Q \cup M \Gamma Q) \cap (Q \cup Q \Gamma M) \subseteq Q \cup (M \Gamma Q \cup Q \Gamma M) \subseteq Q$. Hence, $Q = L \cap R$.

Let M be a Γ-semigroup. M is called a quasi-simple
By assumption, \(M \Gamma m \cap m \Gamma M = M \) for all \(m \in M \).

Example 2.3. Let \(G \) be a group and \(\Gamma = \{ e \} \). It is easy to see that \(\Gamma \) is a unique quasi-\(\Gamma \)-ideal of \(G \) under the usual binary operation. Then \(G \) is a quasi-simple \(\Gamma \)-semigroup.

Theorem 2.5. Let \(M \) be a \(\Gamma \)-semigroup. Then \(M \) is a quasi-simple \(\Gamma \)-semigroup if and only if \(M \Gamma m \cap m \Gamma M = M \) for all \(m \in M \).

Proof. Let \(M \) be a \(\Gamma \)-semigroup.

The proof of \((\rightarrow)\): Assume that \(M \) is a quasi-simple \(\Gamma \)-semigroup. Take any \(m \in M \). First, we claim that \(M \Gamma m \cap m \Gamma M \) is a quasi-ideal of \(M \). We have that \(m \Gamma m \in M \Gamma m \cap m \Gamma M \), this implies \(M \Gamma m \cap m \Gamma M \) is a nonempty set. Moreover, \(M \Gamma (M \Gamma m \cap m \Gamma M) \cap (M \Gamma m \cap m \Gamma M) \Gamma M \subseteq M \Gamma (M \Gamma m \cap m \Gamma M) \cap (m \Gamma M) \subseteq M \Gamma m \cap m \Gamma M \). Therefore, \(M \Gamma m \cap m \Gamma M \) is a quasi-\(\Gamma \)-ideal of \(M \). Since \(M \) is a quasi-simple \(\Gamma \)-semigroup, \(M \Gamma m \cap m \Gamma M = M \).

The proof of \((\leftarrow)\): Assume that \(M \Gamma m \cap m \Gamma M = M \) for all \(m \in M \). Let \(Q \) be a quasi-\(\Gamma \)-ideal of \(M \) and \(q \in Q \). By assumption, \(M = M \Gamma q \cap q \Gamma M \). Since \(Q \) is a quasi-\(\Gamma \)-ideal of \(M \), \(M = M \Gamma q \cap q \Gamma M \subseteq M \Gamma Q \cap Q \Gamma M \subseteq Q \). Therefore \(Q = M \). Hence, \(M \) is a quasi-simple \(\Gamma \)-semigroup.

Theorem 2.6. Let \(M \) be a \(\Gamma \)-semigroup and \(Q \) a quasi-\(\Gamma \)-ideal of \(M \). If \(Q \) is a quasi-simple \(\Gamma \)-semigroup, then \(Q \) is a minimal quasi-\(\Gamma \)-ideal of \(M \).

Proof. Suppose \(M \) be a \(\Gamma \)-semigroup and \(Q \) a quasi-\(\Gamma \)-ideal of \(M \). Assume that \(Q \) is a quasi-simple \(\Gamma \)-semigroup. Let \(C \) be a quasi-\(\Gamma \)-ideal of \(M \) such that \(C \subseteq Q \). Then \(Q \Gamma C \cap C \Gamma Q \subseteq M \Gamma C \cap C \Gamma M \subseteq C \). Therefore, \(C \) is a quasi-\(\Gamma \)-ideal of \(Q \). Since \(Q \) is a quasi-simple \(\Gamma \)-semigroup, \(C = Q \). Then \(Q \) is a minimal quasi-\(\Gamma \)-ideal of \(M \).

Acknowledgement

The author would like to thank the referees for their useful and helpful suggestions.

References