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ABSTRACT:     This paper presents an investigation of wave field during the attack of typhoon Linda in 1997 in the
Gulf of Thailand. Two modeling approaches are studied: The hard computing approach by the WAM cycle 4
model was used firstly to simulate wave heights and periods distribution covering the domain 95°E to 105°E
and 5°N to 15°N. Then, the soft computing approach by the GRNN model was developed to predict the
wave characteristics for lead times of 3, 6, 9, 12, and 24 hrs. The input wind data were obtained from
NOGAPS model archives with 1 degree resolution and are linearly interpolated to specify wind components
at each grid points. It was found that the WAM model underestimated the wave height as much as 20%. The
root mean square errors (RMSE) and the mean absolute deviations (MAD) are 0.18 – 0.26 m and 0.13 – 0.18
m, respectively. The GRNN showed better forecasting results than the WAM model (RMSE < 0.15 m and
MAD <0.10 m). The maximum wave height simulated by the GRNN model during the typhoon Linda 1997
event was found to be 4.0 m while the observed data was 4.06 m. This indicates that for short-term
prediction within 24 hrs, the data-driven model such as the GRNN should be viewed as a strong alternative
in operational forecasting.

KEYWORDS: WAM cycle 4, General Regression Neural Network (GRNN), typhoon Linda.

INTRODUCTION

The Gulf of Thailand is located in Southeast Asia,
immediately to the west of the South China Sea. Its
bordering nations, Cambodia, Malaysia,  Thailand, and
Vietnam, have each historically profited from the Gulf’s
wealth of living and mineral resources. Millions of
people derive their livelihoods from fish and petroleum
harvested from the Gulf, and millions more are affected
by changes in the environment of the Gulf, whether
physical or political.

The pattern of surface wind directions is
characterized by the monsoon system. The prevailing
winds during the northeast monsoon season are mostly
northeasterly, while it is southwesterly over the Gulf of
Thailand during the southwest monsoon. Tropical
cyclones affecting Thailand usually move from the
western North Pacific Ocean or the South China Sea.
Their strength may be characterized by wind speed.
The Gulf of Thailand normally receives the effect of
tropical depressions because of its location farther
inland and because some mountain ranges which

obstruct and decrease the wind speed before moving
towards the Gulf.

This study concerns the short-term prediction of
wave characteristics in the Gulf of Thailand. The wave
fields were selected to cover the tropical cyclone event
from August 1st to December 31st, 1997. At that time
typhoon Linda occurred in the Gulf of Thailand during
the 1st – 4th of November, 1997 which the wave buoy
reported to be 4.06 m of significant wave height. Two
approaches are investigated, namely the hard
computing technique by the WAM cycle 4.0 model and
the soft computing technique by the general regression
neural network model (GRNN).

The WThe WThe WThe WThe WAM Cycle 4.0AM Cycle 4.0AM Cycle 4.0AM Cycle 4.0AM Cycle 4.0
The WAM model, which was developed by WAMDI-

group1 and improved by Komen et al. (1994)2, is one of
the best-tested wave models. It is widely used for global
and regional operational wave forecasting in many
marine and meteorological centers around the world,
such as global operational wave forecasting at the
European Centre for Medium-Range Weather Forecast.
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The model runs for any given regional and global grid
with a prescribed topographic data set. The grid
resolution can be arbitrary in space and time. The
computation can be done on a latitudinal-longitudinal
or on a cartesian grid. The model outputs are significant
wave height, mean wave direction and frequency, wind
stress fields including the wave induced stress, the drag
coefficient and 2D wave spectrum at any selected grid
points and time.

The WAM model is free for non-commercial use. In
this paper we use the latest version3 which includes a
new wind input parameterization developed by Janssen
(1991)4.

The WAM model solves the wave action density
transport equation without predefined spectral
constraints. The model is applicable in a broad range
of wave conditions, ranging from quite daily to tropical
cyclone wave conditions. As described in Komen et al.
(1994)2 this wave model solves the transport equation
of the directional wave spectrum (Eq. (1)).

         (1)

where F represents the spectral density with respect
to ( f , , ,θ φ λ ), f denotes frequencies,θ   is the wave
direction,  and   are the latitude and longitude,
respectively, and                  are the rate of change of the
position and propagation direction of a wave packet
traveling along a great circle path. For the source terms,

 represents a superposition of the wind input, inS ,
white capping dissipation, disS , and nonlinear transfer
function, nlS  (see Eq. (2)).

in dis nlS S S S= + +          (2)

The wind input term was adopted from Snyder et
al. (1981)5. Wind input and dissipation terms of the
present cycle 4 of the wave model are a further
de-velopment based on Janssen’s quasi-linear theory
of wind-wave generation6,7. The dissipation source term
is based on Hasselmann et al. (1974)7 white capping
theory. The nonlinear source term is a parameterization
of the exact nonlinear interactions as proposed by
Hasselmann et al. (1985)8. The basic form of the exact
nonlinear expression is retained. However the five-
dimensional continuum of all resonant quadruplets is
reduced to a two-dimensional continuum by
considering only a pair of discrete interaction
configurations.

The WAM model can be used, in principle, for deep
and shallow water conditions, considering (or not)
depth and current refraction. Extensively applied and
tested for different meteorological conditions, it has a

well established  performance envelope. However, one
of the limitations of WAM appears when the propagation
time step is larger that the source term integration time
step (usually for high spatial resolutions in shallow
waters). The small time step for propagation, requires
a small time step for the source term integration and is
consequently excessive and impractical9. Another
limitation is that typical physical processes of shallow
water waves are not considered in WAM cycle 4.0
(Diffraction, triad-wave interactions, depth-induced
wave breaking, etc). The high-resolution model for the
Gulf of Thailand was nested into a coarse global model
with swell from the South China Sea being allowed to
propagate into the Gulf of Thailand.

The integration of the source terms was performed
with an implicit scheme while the propagation term
was done by the first order upwind flux scheme. The
CPU time and memory usage depended on the region
of interest and the grid resolution. In this study 20
hours of CPU time are needed for a 5 month simulation
using a Pentium IV 2.6 GHz (OS on Linux system) on
a 0.25 by 0.25 degree lat-long grid, 25 frequencies, and
12 directions.

The GRNN ModelThe GRNN ModelThe GRNN ModelThe GRNN ModelThe GRNN Model
Use of neural network (NN) techniques to solve

problems in civil engineering began in the late 1980s.10

Their applications to simulating and forecasting
problems in water resources are few and relatively
recent.11,12,13,14,15,16,17 The NN modeling techniques used
to solve oceanographic problems are also a relatively
new area of research.18,19,20,21,22 Unlike other
conventional-based models, the NN model is able to
solve problems without any prior assumptions. As long
as enough data are available, the NN will extract any
regularities or patterns that may exist and use it to form
a relationship between input and output.  Additional
benefits include data error tolerance and the
characteristic of being data-driven, thereby providing
a capacity to learn and generalize patterns in noisy and
ambiguous input data.

The GRNN is the NN architecture that can solve any
function approximation problems in the sense of
estimating a probability distribution function. The
network was firstly developed by Specht (1991)23. The
learning process is equivalent to finding a surface in a
multidimensional space that provides a best fit being
measured by some statistical parameters. In GRNN,
projected outputs are weighted according to the
distance in the phase space between the input pattern
and the learning pattern.

The GRNN is a three-layer network with one hidden
layer as described in Fig. 1. Each layer has entirely
different roles:

·The input layer is where the inputs are applied.
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·The hidden layer is where a nonlinear
transformation is applied on the data from the input
space to the hidden space. In most applications the
hidden space is of high dimensionality.

·The linear output layer is where the outputs are
produced.

Fig 1. GRNN architecture.

Fig 2. Study area.
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The input is a state space denoted by

10t w L s wX (U , ,F ,H ,D )θ , where 10U
 
is wind velocity at 10

m above the mean sea level, wθ  
is

 
wind direction, LF  is

fetch length, sH
 
is significant wave height, wD  is sea

depth and the desired output is the future value,  t TY + .
The future prediction value ( t TO + ) is calculated by Eq.
(3).

         (3)

where N is the number of input vectors, 2
iD  is a

scalar function representing the Euclidean square
distance from the new input vector to the training input
vector, and σ  is a single smoothing parameter which
determines how tightly the network matches its
predictions to the data in the training patterns.

DATA OBSERVATIONS AND SIMULATION RESULTS
Bathymetry grid is taken from ETOPO524 covering

the region 95°E to 105°E and 5°N to 15°N (see Fig. 2)
with 0.25 degree resolution in both latitude and
longitude (41 x 41 grids). The initially employed wind
data (from the Navy Operational Global Atmospheric
Prediction System (NOGAPS) Model25 archives) were
provided by the Naval Research Laboratory Monterey
(NRLMRY). The winds are from the period 00Z 1-8-97
to 00Z 31-12-97, with 1.0° resolution and are linearly
interpolated to specify wind components at each wave
grid point. During the 1st – 4th of November 1997,
strong northeasterly winds associated with a significant
tropical cyclone activity were observed in the Gulf of
Thailand. The wind speed reached up to 22 m/s over
the area of study. Wave data were obtained from 3
moored buoys of GISTDA (HHN, KCH, and KSI stations)
and 1 automatic marine meteorological station (UNC
station). Time and space scales of model and
measurements were made comparable by taking
appropriate averages.

The wave hindcasting was carried out using 12
directional bands, 25 frequency bands and frequency
interval extending from 0.042 to 0.41 Hz. A 5-minute
time step has been used for the integration of advection
and source terms, considering depth refraction. The
output time step was 6 hours and a JONSWAP spectrum
was selected as an initial condition. The wind data
during November 1st – 4th, 1997 was used to investigate
the generated wave fields under the typhoon event.
Wind fields, significant wave heights and peak wave
periods are shown every 6 hours in Figs. 3 to 6,
respectively. The wind and wave directions are plotted
using the meteorological convention  with arrows every
10 grid points.

Figure 3 shows the wind input (NOGAPS),
characterized by the speed and direction. On November
3rd, 1997, the wind field at 00 UTC was uniform along
the shoreline with speeds approximately 10 m/s. The
simultaneous wave fields displayed 2.0 m height with
the maximum of 3.6 m near the storm center. Six hours
later (at 06 UTC), the wind fields became more well
organized with a speed of 12 m/s and 18 m/s along the
shoreline and near the storm center, respectively. The
storm still kept moving to the west and hit land at 18,
UTC. Wave heights of about 4.5 m were observed near
the shoreline. Generally, the wave fields follow the wind
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Fig 4. Wave fields on November 3rd, 1997 every 6 hours
(WAM output).

Fig 3. Wind fields on November 3rd, 1997 every 6 hours
(NOGAPS).

patterns rather well. Comparing the wind fields in Fig.
3 and wave fields in Fig. 4, the spatial variability is
closely related. The maximums of H

s
 are associated

with the maximum wind speeds.
A sequence of peak wave period is shown in Fig. 5.

On November 3rd, 1997, during the first 6 hours, the
region of simulation was characterized by mainly sea
waves. Under the strong north-easterly winds, a 9-
second swell was generated and distributed along the
south coast. It reached the UNC station at 00 UTC. This
swell was further advected to the north, arriving at the
HHN station with 10-second peak wave periods at 12
UTC. Six hours later it arrived in the upper region of the
Gulf.

Comparison of wave height and wave period time
series at the HHN station is shown in Fig. 6. In general,
the modeled wave heights underestimate the observed
wave heights especially in extreme cases where
underestimation reaches 20 %.  The wave buoy reported
the maximum of 4.06 m significant wave height, whereas
the simulated value is approximately 3.2 m at 06 UTC
on November 3rd, 1997. Difference of nearly 1 m wave
height can be attributed to: i) the limited “local” quality
of the wind field (since the NOGAPS wind data
correspond to a grid size of 1.0° resolution while the

Fig 5. Peak period maps on November 3rd, 1997 (WAM out-
put).
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Fig 6. Time series of wave parameters at HHN station.

WAM model grid size is 0.25°) and ii) the enhanced
energy dissipation due to the centered differences used
in the model and the relatively close presence of a
“diagonal” boundary. The comparison in term of the
time series peak wave period also reveals that during
the first 481 hours there were mainly sea waves. After
this time the peak period increased to 6 s (Buoy data)
and 7.4 s (WAM), denoting a clear effect of typhoon
Linda winds on swell waves.

For the GRNN, there are two models for prediction
of the wave height and wave period, respectively. Each
model was used to predict up to 24-hours leading time.
The first model was constructed using the present
values of wind velocity ( 10U ) and direction ( wθ ), fetch
length ( LF ), significant wave height ( sH ), and water
depth ( wD ) as inputs. The outputs are wave heights at
leading time of 3, 6, 9, 12, and 24 hours. The second
model was constructed in a similar way to the first
model but using the wave periods instead of wave
heights. The training was done for the whole period
between August – December 1997. There are 1,430
data patterns used in this study covering 4 wave stations.
Each model was trained by using the cross-training

(b)(b)(b)(b)(b) Peak wave period

(a)(a)(a)(a)(a) Wave height

technique (at every 2 data patterns).
Results of simulations obtained from the GRNN are

presented in Table 1. The verification statistics (by the
root mean square error, RMSE, and the efficiency index,
EI, as the percentage of occasions when below normal
and above normal events are correctly predicted) show
that the wave heights were simulated very satisfactorily
when short-term prediction of less than 12 hours are
concerned. In addition, the predictions with leading
time of 24 hours still exhibit fairly good results. The
RMSE are less than or equal to 0.15 m; the MAD are less
than or equal to 0.10 m; and the EI of these forecasts
are higher than or equal to 0.85, except at the KSI
station where effects of wave reflection and diffraction
may contribute to the errors.  The wave periods were
simulated not so well as wave heights. The RMSE are
less than or equal to 0.4 s; the MAD are less than or
equal to 0.3 s; and the EI of these forecasts are higher
than or equal to 0.6.

A global evaluation of the individual forecasts is
provided by the scatter plots in Fig.7, where the
forecasts are compared with the observation on a one-
to-one basis at the HHN station. Ideal forecasts should
follow the observations exactly, and therefore all the
points in the scatter plot should fall on a 1:1 line.
Remarkably, for leading times up to 12 hours, the longer
the predictions are performed, the more errors are
observed. Figure 8 displays the time series of the wave
heights and wave periods at the HHN wave stations. In
general, the magnitude and phase can be simulated
reasonably well.  The maximum wave height obtained
from the GRNN during the typhoon Linda event was
found to be 4 m, which is closer to the measured data
than the WAM model results.

Comparisons of wave heights and wave periods are
made between the WAM and GRNN at lead times of 24
hours in Table 2. It is clear that the GRNN shows better
verification statistics than the WAM. Therefore, for the
short-term predictions of wave parameters within 24
hours, the GRNN which is based on the concept of
learning from experiences is recommended. In addition,
it is also observed that the simulated results at the KSI
station are not so good as at the other stations.

CONCLUSIONS

The wave fields during the attack of typhoon Linda
in 1997 in the Gulf of Thailand are investigated by 2
modeling approaches. The hard computing approach
by the WAM cycle 4 model was used first to simulate
the wave heights and wave period distribution covering
the domain 95°E to 105°E and 5°N to 15°N. Then, the
soft computing approach by the GRNN model was
developed to predict the wave parameters (wave heights
and wave periods) for lead times of 3, 6, 9, 12, and 24
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hours. Comparisons are made among 4 wave stations.
It was found that the WAM model underestimates

the wave heights. The root mean square errors (RMSE)
and the mean absolute deviations (MAD) for all 4 wave
stations are 0.18 –0.26 m and 0.13-0.18 m, respectively.
These differences between buoy data and simulated
wave parameters may be due to the low spatial resolution
of the employed wind fields and to the coastal boundary
damping effect. The use of an analytical global wind
model should improve the hindcasted waves. The wind
data set that will be provided by the NRLMRY will allow
more accurate simulations with nested domains. In
addition, diffraction, triad-wave interactions, depth-

Table 1. Results of GRNN wave parameters predictions.

StationsStationsStationsStationsStations   Parameters  Parameters  Parameters  Parameters  Parameters WWWWWave heightave heightave heightave heightave height WWWWWave periodave periodave periodave periodave period
 Leading time (hrs) Leading time (hrs) Leading time (hrs) Leading time (hrs) Leading time (hrs)  Leading time (hrs) Leading time (hrs) Leading time (hrs) Leading time (hrs) Leading time (hrs)

t+3t+3t+3t+3t+3 t+6t+6t+6t+6t+6 t+9t+9t+9t+9t+9 t+12t+12t+12t+12t+12 t+24t+24t+24t+24t+24 t+3t+3t+3t+3t+3 t+6t+6t+6t+6t+6 t+9t+9t+9t+9t+9 t+12t+12t+12t+12t+12 t+24t+24t+24t+24t+24

RMSE 0.09 0.12 0.13 0.15 0.15 0.21 0.31 0.33 0.35 0.35
HHN MAD 0.06 0.08 0.09 0.10 0.10 0.16 0.23 0.25 0.26 0.25

EI 0.95 0.92 0.90 0.87 0.85 0.89 0.74 0.70 0.66 0.64
RMSE 0.06 0.09 0.11 0.12 0.14 0.19 0.26 0.30 0.30 0.33

KCH MAD 0.04 0.06 0.07 0.08 0.09 0.13 0.18 0.22 0.22 0.25
EI 0.99 0.96 0.95 0.95 0.92 0.91 0.85 0.79 0.79 0.73
RMSE 0.07 0.10 0.11 0.12 0.12 0.17 0.22 0.24 0.25 0.25

KSI MAD 0.05 0.07 0.08 0.09 0.08 0.13 0.18 0.19 0.19 0.19
EI 0.92 0.84 0.80 0.77 0.77 0.80 0.66 0.59 0.57 0.56
RMSE 0.06 0.09 0.10 0.11 0.14 0.17 0.24 0.26 0.30 0.34

UNC MAD 0.04 0.06 0.07 0.07 0.09 0.12 0.17 0.18 0.21 0.24
EI 0.98 0.96 0.96 0.94 0.91 0.97 0.94 0.93 0.90 0.87

Fig 7. Scatter plots of wave heights and wave periods at the
HHN station.

Fig 8. Time series of wave heights and wave periods at the
HHN wave station.

induced breaking and bottom friction effect, are
important processes in coastal regions and are not
considered in WAM cycle 4.0 model. This should be an
interesting alternative to reproduce wind waves in very
shallow water.

The prediction accuracy of the GRNN for short lead
times is quite high (RMSE < 0.15 m and MAD < 0.10 m).
The magnitude and phase of wave heights and wave
periods can be simulated reasonably well. However,
the simulated wave periods are not so good as wave
heights. The network results are also found to be more
accurate than those based on the WAM model. The
maximum wave height simulated by the GRNN model
during the typhoon Linda event was found to be 4.0 m
which is closer to the measured wave buoy data than
the WAM model results.  This indicates that for short-
term prediction within 24 hours, the data-driven model
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such as the GRNN should be viewed as a strong
alternative in operational forecasting.
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