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Asstract: On the Orlicz- Cesaro sequence spaces ( cesy, ) which are defined by using Orlicz function @ , we
show that the space ces,, equipped with both Amemiya and Luxemburg norms possesses uniform Opial
property and uniform Kadec-Klee property if ¢ satisfy the &, -condition.
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INTRODUCTION

In the whole paper N and R stand for the sets of
natural numbers and of real numbers, respectively. The
space of all real sequences is denoted by 1°. Let (X”H)
be areal normed space and B(X)(S(X)) be the closed
unit ball (the unit sphere) of x,

A Banach space (X””) which is a subspace of |° is
said to be a Kothe sequence space, if :

(Dforany x ¢ ° and y € X suchthat | x(i) <] y(i)|
forall ie N, we have xe X and "x” < ”y" ,

(it) there is x e X withx(i)#0 forall ie N

An element x from a Kothe sequence space x is
called order continuous if for any sequence (x,) in
X, (the positive cone of x) such thatx, < |x| for
allneN andx, -0 coordinatewise, we have
x,/[—0.

A Kothe sequence space X is said to be order
continuousifany x e X isorder continuous. Itiseasyto
see that xe X is order continuous if and only
if"(0,0,...,O,x(n +1),x(n+ 2),...)“ >0 asn — oo,

A Banach space x is said to have the Kadec-Klee
property (or H-property) if every weakly convergent
sequence on the unit sphere is convergent in norm.

Recall that a sequence{x, } < X is said to be ¢ -
separated sequence for some g > Q if

sep(x, )= inf{"xn -x, " n# m} >&.

A Banach space is said to have the uniform Kadec-
Klee property (write (UKK) for short) if for every g >0
there exists § > 0 such that for every sequence (x, ) in
S(X) with sep(x,)>& and x,—2>x, we have
||x|| <1-4. Every (UKK) Banach space has H-property
(see [1])

The Opial property is important because Banach
spaces with this property have the weak fixed point
property (see [2]). Opial has proved in [3] that the
sequence spaces {,(1 <p <) have this condition but
LPIO,Zﬂ](p #2, 1<p<x)donot.

ABanach space X is said to have the Opial property
(see [3]) if for any weakly null sequence(x,) and

every x 20 in X, we have
lim inf"xn " < liminf|x, + x”
n—>w n—>w

A Banach space X issaid to have the uniform Opial
property (see [4]) il for each £ >0 there existsz >0
such that for any weakly null sequence (x,) in S(X)
and x e X with |]x|| 2 ¢ the following inequality holds:

I+7< }%inf||xn + x"

Forareal vector space X, afunction 90 : X — [0,0]
is called a modularif it satisfies the following conditions:

(D) M(x)=0 ifand onlyif x=0,

()M (ax) = M(x) for all scalarg with 'a[ =],

(HD)Max+ By) <M(x) +M(y), forallx,ye X
and alla,f20 with e+ B =1.

The modular 991 is called convex if

(iti)M(ax+ By) SaMM(x)+ pM(y), for all
x,yeX andalla, 20 witha+ f=1.

For any modular 9 on X, the space

Xop ={x e X:IM(Ax) > 0as A — 0},

is called the modular space.

Asequence (x, ) ofelements of X, iscalled modular
convergent to xe€ Xy, if there exists a 1 >0such
that MM (A(x, —x)) =0, as n— o0,

If 9 is a convex modular, the function
”x”:inf{/bo:mt(%)ﬂ},

and )

I, =inf 2 (14 (),

are two norms on X,,, which are called the

Luxemburg normand the Amemiyanorm, respectively. In
addition || <[], <2]x] for all 5o %o e 131)

Theorem 1.1 Let(x,)c Xy then Hx" ||-—> 0 (or
equivalently ||x, ||, = 0)ifand only if 9M(A(x, ) — 0,
as n—>w, forevery 1>0.
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Proof. See [6, Theorem 1.3(a)].

A modular 9 is said to satisfy the A, -condition
(MeA,)ifforany ¢ >0 there exist constants K > 2
and g >0 such that

M2x)SKM(x)+¢&

forallx e X, with M(x)<a.

Ifon satisfies the A,-condition for allg>0
with K »2 dependent ona, we say that 91 satisfies
the strong A, -condition (9 € AS).

Theorem 1.2 Convergences in norm and in
modular are equivalent in X, if M eA,.
Proof. See {7, Lemma 2.3].

Theorem 1.3 1f9MeA] then for anyL>0
and £ >0, there exists § >0 such that

‘E)ﬁ(u+v)—§m(u)|<£

wheneveru,ve X, with 9 (u)< L and M(v) < 6.

Proof. See [7, Lemma 2.1].

Theorem 1.41f9MM € A, then forany g >0 there
exists &=8(g)>0such that|x|21+5 whenever
M(x)=1+e.

Proof. See [7, Lernma 2.4].

Amap ®: R — [0,0] issaidtobean Orlicz function
if it is even, convex, continuous and vanishing at 0

and @(u) —» o asu —» 0. Furthermore, we say that an

()
Orlicz function @ is an N’ -function if El_t’l ” =

The Orlicz sequence space, £, where @ is an Orlicz

function is defined as

lo={xel’ To(Ax) <0 34>0},

where [o(x) = ZCD(X(I)) is a convex modular
onl,. Thent, isa Banach space withboth Luxemburg

norm " "db and Amemiyanorm ” ”,{g (see [5]). Denoted

by K(x) the set of allk>0 k>0 such that

“XNA =%(1 +1g (kx)) it is well known that K(x) = &
forall x € £, whenever @ isan N’ -function (see [8]).

An Orlicz function @ is said to satisfy the 6, -
condition (we will write @ € §, for short) if there exist
constants K >2 andu, >0 such that the inequality
®Qu)<K®(u) holds for everyyeR satisfying
w < u,.

For l<p<ow, the Cesaro sequence space
(write ,ces,, for short) is defined by

ces, = {xe!o m( le(l)lj <oo}

equipped with the norm

l-{ (28l |

1D
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This space was first introduced by Shiue [9]. It is
usefulin the theory of Matrix operators and others (see
[10}and [11]). Some geometric properties of the Cesaro
sequence spaces Ces, were studied by many authors.

Foran Orliczfunction @ the Orlicz- Cesarosequence

space ,cesq,, is defined by

cesqy = {xe £ py(Ax) <oo, A >O},

where

p(b(x) P2 «1(1)( Z|X(l)lJ

isaconvexmodularon cesy,. Thesubspace E, of
cesqy is defined by

Eq ={x €L’ py(Ax)<w, VA> O}.

Itis worth noting thatif ® € §,, then p, € A} and
cesq =Eg.

To simplify notations, we put cesg, = (Cesd)’“ H ) and
cesq = (cesw,” ||A ) Inthecasewhen ®(t) =" ,(p>1)

the Orlicz- Cesaro sequence space ces;, becomes the

Cesaro sequence space €S, and the Luxemburg norm
is that one defined by (1.1).
Fromnow on, for x e ¢° andie N we let
=(x(l),x(2),...,x(i),0,0,...),
%, =(0,0,.,x(1+1),x(1+2),x(i +3),...),
and
suppx ={ie N:x(i) = 0}.

Resuts
We first give an important fact for||x| , on cesp.

Lemma 2.1 if® is an N'-function, then for
eachxe cesd) there existsk ¢ R such that

Joll =1+ pa (e,

Proof. For each x= (x(i)):lecesa, we have

7= 15101 e tor Oserve ha el =IFl,.
and @ isan N’ —function, by (8, Corollary 2.3] there
exists k e R such that

cesd,

[, =1 +10)

:E[Hm (Exi w20 pute),

This completes the proof of our Lemma.

Proposition 2.2 Suppose that ¢ isan N’ -function
and let {xn} be a bounded sequence in cesj such
that x, ——>x for somexeces). Ifk, eK(x,)



ScienceAsia 31 (2005) 175

andk, - o, then x=0, 1
Proof. For eachneN,7>0, put G, ={1'GN-'1#Z}=1
n>0,G

W(J 277}- First, we claim that for each

wm =9 foralllargen e N, Otherwise, without loss of generality, we may assume that G, ,, # D forall
(n.m) 24 g Y, Y (n.n)
neN and for somen >0. Then (k X ) ‘

(1 € G( )).

1
x :k—(l+p¢(k x ))
that { ,,} is bounded, hence we have the claim. By the clalm we have — Z, ! =0 asn >0 forallieN.

This implies that x,(i)—>0 asn > forallie N. Since X, —>Xx, We have x,(i)—> x(i) forallieN, soit
follows that x(i) = O forall ieN.

Lemma 2.3 For any Orlicz function @, we have Eq © {X €Cesg, : “X X, ” - O}
Proof. Write A= {X €CeSy, : ”X x, n - 0} letxeE, andg>0. Since xeE,, there existsi, e N such
that Pg ((X X, ) / )< ¢ foralli>i,. Therefore, by the definition of || %A we have

l{a (x X, )H <1+p¢((x x )/g <l+e

foralli>i . Thisyields " X=X )’ —0 asi— oo since ¢ is arbitrary. Hence x € A, proving the Lemma.

Theorem 2.4 The space cesg, is (UKK) if @ is an N’ -function which satisfies the &, - condition.
Proof. For a given £ >0, by Theorem 1.2 there exists § € (O 1) such that ||y“ = % implies pg (y) >26.
Givenx, € B(ceso)

-x, ||A 2&(n#m), we shall complete the proof by showing
that ”X“A <1-6. Indeed, if x =0, thenitis clear. So, we assume x » 0. In this case, by Proposition 2.2 we have
that{k,} is bounded, wherek, € K(x, ). Passing to a subsequence if necessary we may assume thatk, —k for
somek >, Since @ € ,, Lemma 2.3 assures that there exists je N such that “X,j “A 2 ”X“A — 3. Since the weak
convergence of {x,,} implies that x, —x coordinatewise, we deduce that x,(i) = x(i) uniformly on
{1,2,...,j}. Consequently, there existsn, € N such that

(Xn - X, )IJ_ “A kS % forall n,m=n,,

(X,.—X IN_, / forall nmzn, ,m=n.

2/ for alln,mzn ,m#n which yields X, | 2%, for infinitely manyneN,
4 . yields %o || 274 y many

hence Py (anw-, 220. W1thout loss of generality we may assume that |I%,, A 2%, forallp e N. By using the

convexity of @ and the inequality ®(a +b) 2 ®(a)+®(b), a,beR* together with the fact that k, 21, we have

~ Po (me_, )

4 _%pm (knanwﬁ. )

which implies

X

My

This gives or

Zlix

n

=

S | R L M)

it [ Lok o) £ o8]

to (R O ot O e vl 5 o o]
v go( B 0o 5 o B4 )
=%+%p®(knxnh)—>Z+Zn—p¢(knxl,)—”X|, ”A 2, -,
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hence "an <1-6.

Theorem2.51f ¢ is an N’ -function which satisfies
& - condition, then cesj hasthe uniform opial property,

Proof. Take any ¢ >0 and x € cesj;, with x|| >&.
Let ( ) be weaklynullsequencein S (cesd, ) By®es,,
and Theorem 1 2 jhere is&e(0, 1) independent ofx

such that P >& Also, by ®e6,,we

have cesfl‘,qu,. By Lemma 2.3, x is an order
continuous element, this allows us to find j, € N such
that
s | <
N-jo || 4 4
and
o 1J 'x(l)[ &
D ~ <=
=72+1 (]E 2 8

Lol Lo, €
<Y - +=,
);—1 ]Ei 2 8
whichimplies
76 o (1 2]x() Q.1
— <Y P~ .
R
From x, —*—0, we have x, i)—)O forallieN,
which implies that pq:( —> 0. By Theorem 1.2 we
have %, rj—>0, S0 the%e ex1stsn e N such that
Xal, |l <Z forall n>n,.
Therefore,
=l(x+x,) +(x+x,)
Jo N-jo || o
ZHXI, +xn|N" ~ i, _”X"h
’ oA " Q2
Z“x‘i +x",N_’ A—%.

Since @ is an N’ -function, by Lemma 2.1 there

exists k, >0 such that

”x% Xy llA =-k1—(1 + Po (kn (x,in Xy )))
This together with (2.2) and the fact

that g (y+2) 2 Py (¥) + po (2) if suppy O suppz=2,
we have

_+%p®(knx|j) kl pd)(kn X, )‘—i‘

Xy, HA + fn‘% (knxu, )—§ (2.3)

We may assume without loss of generality

thatk, 25- Since 2k, 21, by convexity of Orlicz
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function @ we have that ,DQ)(k X, )_Zk pq,(xl )
Thus inequalities (2.1) and (2.3) 1mply that

> o) X, ¢
2 +200) 5|3
100 ¢
250 - -2
> X “ * E (]E 2 2
1 §+£ 3
4 8 2
=1+< for all n>n,,

which deduce "l_m

Theorem 2.6 If ¢ is an Orlicz function which
satisfies &, -condition, then ces;, has the uniform opial
property.

Proof. Take any ¢ >0 and x € ces,, with ”x“ e
Let(x, ) be weakly nullsequencein 5(ces® By®ed,,
we have Po€A;. Thus by Theorem 1.2, there
isne (O,l) independent of x suchthat 77 < p, (x) < 0.
Also,by p,, € A}, Theorem 1.3 asserts that there exists
n e (0,77) such that

|0 (y+2) = P (¥)| <

whenever pg, (y) <1 and p, (Z) <n,.
Since pg (x) <o, we choose j, €N such that

zq)(J ¥ |x(i )\j< 3 cp[ SJx(; )Ij s

This gives

n<2d>[ SJx(i )l]+ s CD[];IX l)

J=j ¥l

Q24

(2.5)

SJZ(D(-I—ZJZIX(l)l]+-ﬂ—‘
=1 ji=1 4
which implies
n_3m
O ——=—"
le (]nzllx()ﬂ 7= 4 1 4 4

This together with the assumption that x, —*-0,
there exists n e N such that

; <ch>[ z|x (i) +x(i )U 2.6

foralln>n_, since the weak convergence implies
the coordinatewise convergence. Again by x, —*»0,

there existsn, >n, such that pll)(
n>ny,so from (2.4) we obtain

X, )<771 for all
Pao (xnIN,," + *al, )_ Po (X

fhy_, )' <%;
since Pg (x,1 ) =1. Hence,
1———71=pq> (X,,)“‘% < Po (X"IN-ru ):j:

4
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for alln >n,. This together with (2.4), (2.5) and

(2.6) imply that forany n>n,,

Po

depending on7 only such that |

j=1

(x, +x)= qu{li]xn (i)+x(i)U+ ) @(li

Ji=t =, +1 Ji=1

o 1.4
> CD(— >
j=1 jisl

xn(i)+x(i)’]+ $ cp[l »

j=3a+1 Ji=ip+l
377 © 1 J ) n

>— bl — -+
4 " l:%ﬂ (] i:%H Xn (1)0 4

23_’7{1-2)_17. S
4 4) 4 4

By p, €A, and by Theorem 1.4, there ist
X, +xHL 21l+7.

Corollary 2.7 ({12, Theorem 2]) Forany 1 < p < o,

the space ¢es, has the uniform Opial property.
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