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Some Geometric properties in Orlicz- Cesaro Spaces
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ABSTRACT: On the Orlicz- Cesaro sequence spaces ( ces<f> ) which are defined by using Orlicz function <I> , we
show that the space ces<f> equipped with both Amemiya and Luxemburg norms possesses uniform Opial

property and uniform Kadec-Klee property if <I> satisfy the 52 -condition.
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INTRODUCTION

In the whole paper Nand IR. stand for the sets of
natural numbers and of real numbers, respectively. The
space of all real sequences is denoted by 1° . Let (X,II'ID
be a real normed space and B(X)(S(X)) be the closed
unit ball (the unit sphere) of X.

A Banach space (X,II'ID which is a subspace of 1° is
said to be a Kothe sequence space, if:

CD for any x E 1° and y E X such that I x(o 1::;1 y(o 1
for all i EN, we have x E X and Ilxll::; Ilyll '

(ii) there is x E X with x( i) "* o for all i E N
An element x from a Kothe sequence space X is

called order continuous if for any sequence (xn) in
X+ (the positive cone of X) such that xn ::; Ixl for
all n E Nand Xn -? o coordinatewise, we have
Ilxn II-? 0.

A Kothe sequence space X is said to be order
continuous if any x E X is ordercontinuous.ltiseasyto
see that x E X is order continuous if and only
ifll(O,O,...,O,x(n+l),x(n+2),...)II-?O asn-?oo.

A Banach space X is said to have the Kadec-Klee
property (or H-property) if every weakly convergent
sequence on the unit sphere is convergent in norm.

Recall that a sequence { Xn } c X is said to be [;-
separated sequence for some Ii> 0 if

sep(xJ = inf{llxn -xm":Wi'm} >6".
A Banach space is said to have the uniform Kadec-

Klee property (write (UKK) for short) if for every 6" > 0
there exists 15 > 0 such that for every sequence (xn) in
SeX) with sep(xn»1i and Xn--~-H, we have
IIxII < 1- 15. Every (UKK) Banach space has H-property
(see [1])

The Opial property is important because Banach
spaces with this property have the weak fixed point
property (see [2]). Opial has proved in [3] that the
sequence spaces £ p (l < P < 00) have this condition but
Lp [O,2n"j (p"* 2, 1 < P < 00) do not.
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A Banach space X is said to have the apial property
(see [3]) if for any weakly null sequence (xn) and

every x*-O in X, we have
lim infllxn II < lim infllxn + xii.
n-->oo n-->oo

A Banach space X is said to have the uniform Opial
property (see [4]) if for each & > 0 there exists T > 0
such that for any weakly null sequence (xn) in S( X)

and x E X with Ilxll;::: & the following inequality holds:

l+TS liminfllxn +xll.
n->",

Fora real vector space X, a function 9'J1: X ~ [0,00]
is called a modular if it satisfies the following conditions:

CO 9'J1(x) = a if and only if x = 0,

(ii)9'J1(ax) = 9'J1(x) for all scalar a with lal=l,
(iii)9'J1(ax + j1y)::; 9'J1(x) + 9'J1(y), for all x,y E X

andalla,j1~O with a+j1=l.
The modular 9'J1 is called convex if
(iii)9'J1(ax+j1y)::;a9'J1(x)+j19'J1(y), for all

X,YEX andalla,j1~O witha+j1=l.
For any modular 9'J1 on X, the space
X!m = (x E X:9'J1(AX) ~ a as A ~ OJ,
is called the modular space.
A sequence (xn) of elements of X!m is called modular

convergent to x E X!m if there exists a A> a such
that 9'J1(A(Xn - x)) ~ 0, as n ~ 00.

If 9'J1 is a convex modular, the function
Ilxll = inf{A > 0:9'J1(/'i)::; I},

and 1
IIxIL = inf-(l + 9'J1(kx)),

bok
are two norms on X!)J!' which are called the

Luxembur~ norm and the Amemiya norm, respectively In
addition, IIxll s IlxiiA s 211xll for all x E X!)J! (see [5]).

Theorem 1.1 Let(xn)cX!m thenllxnII-"'~O (or
equivalently Ilxn IIA ~ 0) if and onlyifM(A,(xn)) ~ 0,
as n ~ 00 , for every A > 0 .
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Proof. See [6, Theorem 1.3(a)].
A modular 9Jt is said to satisfy the /).2 -condition

( 9Jt e /).2 ) if for any [; > 0 there exist constants K ;;:: 2
and a > 0 such that

9Jt(2x)::;; K9Jt(x) + E
forallxeX!)JI with 9Jt(x)::;;a.
If 9Jt satisfies the /).2 -condition for all a > 0

with K ;;:: 2 dependent on a, we say that 9Jt satisfies
the strong /).2 -condition ( 9Jt e /).; ).

Theorem 1.2 Convergences in norm and in
modular are equivalent in X!D! if !m E .£\2'

Proof. See [7, Lemma 2.3].

Theorem 1.3 IfVJlE~~ then for any L>O
and 8 > 0, there exists 8 > 0 such that

IVJl(u + v)-VJl(u)1 <8
wheneveru,veX9J! with!.m(u):S:L and !.m(v):S:8.
Proof. See [7. Lemma 2.1].

Theorem 1... If rot E 6.~, then for any 8 > 0 there
exists li = li( 8) > 0 such that Ilxll ~ 1 + li whenever
rot(x)~ 1+8.

Proof. See [7, Lemma 2.4].
A map <1>: R ~ [0,00] is said to beanOrlicz.function

if it is even, convex, continuous and vanishing at 0

and <1>( u) ~ 00 as u ~ 00. Furthermore, we say that an

. <1>( u)
Orlicz function <1> is an N' -function if hm -= 00.

.-->"" U

The Orlicz sequence space, £ 11>' where <1> is an Orlicz

function is defined as

£11> ={xe£O :I<I>SAx)<oo 3A>O},
where III> (x) = L<1>(x(i)) is a convex modular

i=l

on f 11>' Then f II> is a Banach space with both Luxemburg

norm II'II,~> andAmemiyanorm II'II,~ (see [5]). Denoted

by K(x) the set of all k > 0 k > 0 such that
1

IIxlL =k"(l + Iq, (kx )), it is well known that K(xh= 0

for all x E fell whenever <1> is an N' -function (see [8]).
An Orlicz function <1> is said to satisfy the 82-

condition (we will write <1> E 02 for short) if there exist
constants K ~ 2 and Uo > 0 such that the inequality
<1>(2u) $ K<1>( u) holds for every u E IR satisfying
lu\ $uo'

For 1 < P < co, the Cesaro sequence space
(write, cesp' for short) is defined by

cesp ={XEfO :L:={~~IX(i)IJ <co},

equipped W

(i~h(t~e .norm )p)~

Ilxll= ~l ~~lx(i)1
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This space was first introduced by Shiue [9]. It is
useful in the theory of Matrix operators and others (see
[ 10] and [ll]). Some geometric properties ofthe Cesaro
sequence spaces cesp were studied by many authors.

F or an Orlicz function <D the Orlicz- Cesaro sequence

space ,cestf> , is defined by

ces<l> ={XE£o: p<I>(AX) <00, 3A>O},

where 1 n

)Pq,(X)=L~=IcI> (-Llx(i)1 'n 1=1
isaconvexmodularon cesq,. Thesubspace E", of

ces", is defined by

E", ={xe[o: Pq,(AX) < 00, VA>O}.

It is worth noting that if cI> e 82, then pq, e A~ and

ces", = E",.

To simplify notations, we put ces~ = (ces", ,Ill) and

ces~ = (cesq"llt). In the case when cI>(t) = ItlP ,(p > 1)

the Orlicz- Cesaro sequence space ces<J) becomes the

Cesaro sequence space cesp and the Luxemburg norm

is that one defined by (1.1).

From now on, for x e [° and i e N we let
xI = (x(1),x(2),...,x(i),O,O,...),

xlN-i = (O,O",.,x(i + l),x(i + 2),x(i + 3)",.),

and

suppx ={ieN: x(i):;t:O}.

RESULTS

We first give an important fact forllxllA on ces~.

Lemma 2.1 If <I> is an Nt -function, then for
each x E ce~~ there exists k E JR such that

1-
IIxIIA ="k(l+ p<I>(kx)).

Proof. Foroo each x = (X(U):l E ces<I> we have

x=(~~IX(i)ll=l ER<I>' Observe that IlxIIm~ =llxllf~,

and <I> isan Nt-function, by[8~Corollary2.3] there

exists k E IR such that

114<4 =llxlli~ =i(l+I<I>OvC))

= i( 1 + L~=l <1>(; L~=lIX(i)I)) =i(1 + p<I>(kx)).

This completes the proof of our Lemma.

Proposition 2.2 Suppose that <1> is an N' -function
and let {xn} be a bounded sequence in ces~ such
thatxn~x for somexEces~. IfknEK(xn)(1.1)
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and kn ~ 00, then x = 0.

Proof. For each n E N,1] > 0,

1] > O,G(n.~) = 0 for alllarge n E N.

n E N and for some 1] > O. Then

IlxnllA =f(l+P<l)(knxn))~ <D(:nXn) (iEG(n,~))'
By applying the assumption that <D is an Nr -function, we obtai~llxn IIA -;. 00, which contradicts to the fact

that {xn} is bounded, hence we have the claim. By the claim, we have ~ I;=llx /i)I-;. 0 as n -;. 00 for all i E N.
!This implies that xn ci) -;. 0 as n -;. 00 for all i E N. Since xn ~ x, we have xn 0) -;. xCi) for all i E N, so it

follows that xCi) = 0 for all i E N.

Lemma 2.3 For any Orlicz function <D, we have E<I) ~ {x E ces<I) : Ilx - xli IIA -;. O}.
Proof. Write A = { X E ces<I) : Ilx - xli IIA -;. O}. Let x E E", and e > 0 . Since x E E<I), there exists io E N such

that p", (( x - xI, )/ e) < e for all i > io' Therefor
,e, by the definition , ofll'ijA we have

le-l(x-xl,l :::;l+p",((x-xl,)/e)<l+e
for all i > io' This yields II( x - xli )1 A -;. 0 as i -;. 00 since e is arbitrary Hence x E A, proving the Lemma.

Theorem 2.4 The space ces~ is (UKK) if <D is an N' -function which satisfies the 62 - condition.

Proof. For a given e > 0, by Theorem 1.2 there exists 6 E (0,1) such that IlyliA ~ ~ implies p", (y) ~ 26.

Given xn E B( ces~) ,xn -;. x weakly and Ilxn - xm IIA ~ e( n ::f= m), we shall complete the proof by showing

that IIxIIA :::; 1- 6. Indeed, if x = 0, then it is clear. So, we assume x::f= O. In this case, by Proposition 2.2 we have

that {kn} is bounded, where kn E K( xn)' Passing to a subsequence if necessary we may assume that kn -;. k for

some k > O. Since <D E 62, Lemma 2.3 assures that there exists j E N such that Ih IL ~ IlxiiA - 6. Since the weak

convergence of {xn} implies that Xn -;. x coordinatewise, we deduce that x/i) -;. xCi) uniformly on

{1,2,...,j}. Consequently, there exists no EN such that

II(xn -xm\L :::;~
which implies

II(Xn -xmt1 ~~ for all n,m~no,m*n.
This gives orlIXmIN_,IIA ~~ foralln,m~n(),m*n, whiChyieldsIlXn,N-,11 ~~ forinfinitelymanynEN,

hence pq, ( XnIN-I ) ~ 2b. Without loss of generality we may assume that IIXn"-1 t ~ ~, for all n E N. By using the

convexity of <t> and the inequality <t>( a + b) ~ <t>( a) + <t>(b), a,b E JR+ together with the fact that kn ~ 1, we have

1- 20 211xn IIA - P<1> ( XnlN-i )

211xnliA -i-P<1>(knXnIN-i)
n

1 1 00 (k ; I I) 1 00 (k i-j

l I)=k:+k:~<1> 1-~ xn(r) -k:i=tl<1> 1-~ xn(J+r)

1 1 j (k ;
1 I) 1 [ 00 (k ; 1 I) 00 (k ;-J

I I)]=k:+k:~<1> 1-~ xn(r) +k: ;=tl<1> 1-~ xn(r) -;=tl<1> -:-~ xn(J+r)

1 1 j (k ;
I ) 1 [ 00 (k j k ;-j ) 00 (k ;-j

)]=k:+k:~<1> -:-~ xn(r)1 +k: ;=tl<1> -:-~IXn(r)I+-:-~IXn(J+r)1 -;=tl<1> -:-~IXn(J+r)1

1 1 j (k ;
1 I) 100 (k j

l I)2k:+k: ~<1> -:- ~ xn (r) +k:;=tl <1> -:- ~ xn (r)

=i-+i- P<1> (knXnli) ~i-+i- P<1> (knx,J 21h L 2/IxliA -0,
n n n n

175

G(n,ry) ={iEl~ :+L:;=t!Xn(})I2':lJ}.put First, we claim that for each

Otherwise, without loss of generality, we may assume that G(n,ry) *- 0 for all

foralln,m~no'
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hence IlxiiA ~1-8.

Theorem2.5 If <I> is an N' -function which satisfies
0 - condition, then ces~ has the uniform opial )?roperty

Proof. Take any G > 0 and x E ces~ with IlxlL :?: G.
Let (xn) be weakly null sequence in S( ces~). By <I> E 02'

and Theorem 1(2x)here is ~ E (0,1) independent of x
that P 2" > c;. Also,

ces~ = E<I>. By Lemma 2.3, x is an order

continuous element, this allows us to find )0 E N such

such

have

that

Ih-i"IL

<I>(~ tB2l ] ~
It follows that j i=1 2. <"8'

~ ~ t<I> [~ t IX(i)I ] + 00 <I> [~ t IX(i)l
j)-1 ) 1=1 2.-L ) i=l 2.

)-),,+1

and
00

L:
)=.1,+]

j" ( l . j IX(i)l j ~:5:I<l> -I- +-,
j=l j 1=1 2 8

which implies
Ipq,(y+z)- pq,(y)1 <%'

whenever pq, (y) S 1 and pq, (z) S 1]].
Since pq, (x) < 00, we choose jo EN such that

00 ( 1 j 1 I ) 00 ( 1 jl I) 1] j=t+l<D Ji=t+l x(i) <i=t+l<D J~ x(i) <~. (2.5)

This gives

1] < ~<D(] ~IX(i)I)+ jJ+l <D(] ~Hi)l)

S t<D (~ tlx(i)I ) +~,
)=1 ) ;=1 4

which implies

j" ( 1 j
I . I) 1]1 1] 31]L<D -:L X(I) >1]-->1]--=-.

j=1 ) ;=1 4 4 4

This together with the assumption that Xn ~O,
there exists no EN such that

31] j" ( 1 j

I I)4s~<D J~Xn(i)+X(i). (2.6)
for all n > no' since the weak convergence implies

the coordinatewise convergence. Again by Xn ~O,

Ilx+xnll A ::::~+~Pq, (knXI )+~Pq, (knXnl . )_I there existsnl >no such thatpq, (x I. )<1]1 for allk k I" k N-I" 2 nl"
n n n n > np so from (2.4) we obtain

::::llxn'N-I"L +fPq,(knX'j,,)-f (2.3) Ipq,(XnIN-j" +Xnlj,,)-Pq,(XnIN-j,,)I<%,

We may assumen without loss of generality since Pq, (xn) =1. Hence,

that kn ::::~. Since 2kn:::: 1, by convexity of Orlicz 1-!Z. = pq, (xn) _!Z. < pq, (XnIN-i" ) = . f <D(~ t Ixn (i )1) ,
4 4 J=J" +1 ) I=J,,+1

71; ..j, [ 1 j IX(i)I
J-:<:;I<D -I-.

8 }=1 j 1=1 2

Fromxn~O, '1eh~vexn i)~O foralliEN,
which im. plies that P$ \ Xnlj, } ~ O. By Theorem 1.2 we
have Ih, IIA ~ 0, so the~ exists no EN

IIXnlj,t <4 for all n>no'

Therefore,

Ilx+xnllA =11(x+xn\" +(x+xnt",L

~Ih" +xnIN-;" IIA -llxIN-h' IIA -llxnl;" IL (2.2)

II II ~ > x +X --- I" nIN-;" A 2 .

Sincecp is an N'-function, by Lemma 2.1 there

exists kn > 0 such that

Ih +Xnl .11 =~ (l+P<!> (kn(xl +Xnl- ))) .r" N-r" A kn r" N )0

This together with (2.2) and the fact

that P<!> (Y + z) 2 p<!> (y) + p<!> (z) ifsuppyl1 suppz= 0,
we have
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function <D we have that P<t> (knXljo) ~ 2knP<t> (XI!,).

Thus inequalities (2.1) and (2.3) imply that

IIX+Xnt 21IXnIN-j" L +2P<D[ X~" )-f
IIII .j" ( 1 j IX(i)l j ~> x +22:<1> -2:- --

nIN-1" A )=1 j ;=1 2 2

~ 14~ ~
>1--+---

4 8 2
= 1 + ~ for all n > no'

which deduces lim infllx + xn II 21 +~.
n-->oo A

Theorem 2.6 If <1> is an Orlicz function which
satisfies 62 -condition, then ces~ has the uniform opiai

property
Proof. Take any G > o and x E ces<D with IlxIIL 2 G.

Let (xn) be weakly null sequence in S( ces~). By <1> E 62,
we have P<D E,1;. Thus by Theorem 1.2, there
is 7] E (0,1) independent of x such that 7] < P<D (x) < 00.
Also, by P<D E,1;, Theorem 1.3 asserts thatthere exists
7]1 E (0,7]) such that

by <1> E 52, we

<.f
4

(2.4)(2.1)

such that
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for all n > nj. This together with (2.4), (2.5) and
(2.6) imply that for any n > nj,

j, (lj l I) 00 (lj l I)pq,(xn +x)=~<I> j~ xn(i)+x(i) +i=t+l<I> j~ xn(i)+x(i)

> .~<I>(~ ~IXn (i)+x(i)I)+ jJ+l <I>(~iJ+1IXn (i)+X(i)l)

31] 00 ( Ii I I) 1] ;:::-+
.):. . <1> ~_L .. xn(i) --

4 /-1,,+1 ) l-Jc,+1 4

'? 31] +(l-!l )-!l
4 4 4

By P<1> E L1;, and by Theorem 1.4, there is T
depending on 17 only such that Ilx. + xilL ~ 1 + T.

Corollary 2. 7 ([ 12, Theorem 2]) For any 1 < P < 00,
the space cesp has the uniform Opial property
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