Some Geometric properties in Orlicz- Cesaro Spaces

Narin Petrot and Suthep Suantai*

Department of Mathematics, Chiang Mai University, Chiang Mai, 50200, Thailand.
* Corresponding author, E-mail: scmti005@chiangmai.ac.th

ABSTRACT: On the Orlicz- Cesaro sequence spaces (ces<φ>) which are defined by using Orlicz function φ, we show that the space ces<φ> equipped with both Amemiya and Luxemburg norms possesses uniform Opial property and uniform Kadec-Klee property if φ satisfy the Ω-condition.

KEYWORDS: Orlicz-Cesaro sequence spaces, uniform Kadec-Klee property, uniform Opial property, Amemiya norm, Luxemburg norm.

INTRODUCTION

In the whole paper N and R stand for the sets of natural numbers and of real numbers, respectively. The space of all real sequences is denoted by ℓ₀. Let (X,∥·∥) be a real normed space and B(X)/(S(X)) be the closed unit ball (the unit sphere) of X.

A Banach space (X,∥·∥) which is a subspace of ℓ₀ is said to be a Kothe sequence space, if:

(i) for any x ∈ ℓ₀ and y ∈ X such that |x(i)| ≤ |y(i)| for all i ∈ N, we have x ∈ X and ∥x∥ ≤ ∥y∥,
(ii) there is x ∈ X with x(i) ≠ 0 for all i ∈ N.

An element x from a Kothe sequence space X is called order continuous if for any sequence (xₙ) in X⁺ (the positive cone of X) such that xₙ ≤ |x| for all n ∈ N and xₙ → x coordinatewise, we have ∥xₙ∥ → 0.

A Kothe sequence space X is said to be order continuous if any x ∈ X is order continuous. It is easy to see that x ∈ X is order continuous if and only if ∥(0,0,...,0,x(n+1),x(n+2),...)| → 0 as n → ∞.

A Banach space X is said to have the Kadec-Klee property (see (4)) if for each ε > 0 there exists τ > 0 such that for every weak null sequence (xₙ) in S(X) and x ∈ X with ∥x∥ ≥ ε the following inequality holds:

1 + τε ≤ lim inf ∥xₙ + x∥.

A Banach space X is said to have the uniform Kadec-Klee property (write (UKK) for short) if for every ε > 0 there exists τ > 0 such that for every weak null sequence (xₙ) in S(X) and x ∈ X with ∥x∥ ≥ ε the following inequality holds:

1 + τε ≤ lim inf ∥xₙ + x∥.

A Banach space X is said to have the Opial property (see (3)) if for any weakly null sequence (xₙ) and every x ≠ 0 in X, we have

lim inf ∥xₙ∥ < lim inf ∥xₙ + x∥.

A Banach space X is said to have the uniform Opial property (see (4)) if for each ε > 0 there exists τ > 0 such that for any weak null sequence (xₙ) in S(X) and x ∈ X with ∥x∥ ≥ ε the following inequality holds:

1 + τε ≤ lim inf ∥xₙ + x∥.

For a real vector space X, a function M : X → [0,∞] is called a modular if it satisfies the following conditions:

(i) M(x) = 0 if and only if x = 0,
(ii) M(αx) = αM(x) for all scalar α with |α| = 1,
(iii) M(αx + βy) ≤ αM(x) + βM(y), for all x, y ∈ X and all α, β ≥ 0 with α + β = 1.

The modular M is called convex if

(iv) M(αx + βy) ≤ αM(x) + βM(y), for all x, y ∈ X and all α, β ≥ 0 with α + β = 1.

For any modular M on X, the space Xₘ = {x ∈ X : M(λx) → 0 as λ → 0}, is called the modular space.

A sequence (xₙ) of elements of Xₘ is called modular convergent to x ∈ Xₘ if there exists a λ > 0 such that M(λ(xₙ) - x) → 0, as n → ∞.

If M is a convex modular, the function

∥x∥ = inf {A > 0 : M(Ax) ≤ 1},

and

∥x∥ₘ = inf {1 + M(Ax) : A > 0},

are two norms on Xₘ, which are called the Luxemburg norm and the Amemiya norm, respectively. In addition, ∥x∥ₘ ≤ 2∥x∥ for all x ∈ Xₘ (see [5]).

Theorem 1.1 Let (xₙ) ⊂ Xₘ then ∥xₙ∥ → 0 (or equivalently ∥xₙ∥ₘ → 0) if and only if M(λ(xₙ)) → 0, as n → ∞, for every λ > 0.
Proof. See [6, Theorem 1.3(a)].

A modular Ω is said to satisfy the Δ_2-condition ($\Omega \in \Delta_2$) if for any $\varepsilon > 0$ there exist constants $K \geq 2$ and $a > 0$ such that
$$\Omega(2x) \leq K\Omega(x) + \varepsilon$$
for all $x \in X_\Omega$ with $\Omega(x) \leq a$.

If Ω satisfies the Δ_2-condition for all $a > 0$ with $K \geq 2$ dependent on a, we say that Ω satisfies the strong Δ_2-condition ($\Omega \in \Delta_2^s$).

Theorem 1.2 Convergences in norm and in modular are equivalent in X_Ω if $\Omega \in \Delta_2$.

Proof. See [7, Lemma 2.3].

Theorem 1.3 If $\Omega \in \Delta_2^s$ then for any $L > 0$ and $\varepsilon > 0$, there exists $\delta > 0$ such that
$$\Omega(u + v) \leq L \Omega(u) \leq \delta$$
equivalently, whenever $u, v \in X_\Omega$ with $\Omega(u) \leq L$ and $\Omega(v) \leq \delta$.

Proof. See [7, Lemma 2.4].

Theorem 1.4 If $\Omega \in \Delta_2^s$, then for any $\varepsilon > 0$ there exists $\delta = \delta(\varepsilon) > 0$ such that $\|x\| \geq 1 + \delta$ whenever $\Omega(\|x\|) \geq 1 + \varepsilon$.

Proof. See [7, Lemma 2.2].

An Orlicz function Φ is defined as
$$\Phi(x) = \int_0^x \phi(t)\,dt$$
in $L^1(0, \infty)$, where ϕ is a non-negative, non-decreasing function.

The Orlicz sequence space, ℓ_Φ, where Φ is an Orlicz function is defined as
$$\ell_\Phi = \{x \in \ell^1 : \phi\Omega(\|x\|) < \infty\}$$
where $\phi\Omega(\|x\|) = \sum_{n=1}^\infty \phi(\|x_n\|)$.

An Orlicz function Φ is said to satisfy the Δ_2-condition (we will write $\Phi \in \Delta_2^s$) if there exist constants $K \geq 2$ and $a > 0$ such that the inequality $\Phi(2x) \leq K\Phi(x)$ holds for every $x \in \ell_\Phi$ satisfying $\|x\| \leq a$.

For $1 < p < \infty$, the Cesaro sequence space (write ℓ_Φ^{ces}, for short) is defined by
$$\ell_\Phi^{\text{ces}} = \{x \in \ell^1 : \sum_{n=1}^\infty \frac{1}{n}\phi(\|x_n\|) < \infty\},$$
equipped with the norm
$$\|x\| = \left(\sum_{n=1}^\infty \frac{1}{n}\phi(\|x_n\|)^p\right)^{1/p}$$
(1.1)

This space was first introduced by Shiue [9]. It is useful in the theory of Matrix operators and others (see [10] and [11]). Some geometric properties of the Cesaro sequence spaces ℓ_Φ^{ces} were studied by many authors.

For an Orlicz function Φ the Orlicz- Cesaro sequence space ℓ_Φ^{ces}, is defined by
$$\ell_\Phi^{\text{ces}} = \{x \in \ell^1 : \rho_\Phi(\lambda x) < \infty, \exists \lambda > 0\},$$
where
$$\rho_\Phi(x) = \sum_{n=1}^\infty \Phi\left(\frac{1}{n}\sum_{i=1}^n |x(i)|\right),$$
and Φ is a convex modular on ℓ_Φ^{ces}. The subspace E_Φ of ℓ_Φ^{ces} is defined by
$$E_\Phi = \{x \in \ell^1 : \rho_\Phi(\lambda x) < \infty, \forall \lambda > 0\}.$$

It is worth noting that if $\Phi \in \Delta_2^s$, then $\rho_\Phi \in \Delta_2^s$ and $E_\Phi = E_\Phi^{\text{ces}}$.

To simplify notations, we put $E_\Phi = (E_\Phi, \rho_\Phi)$ and $E_\Phi^{\text{ces}} = (E_\Phi^{\text{ces}}, \rho_\Phi^{\text{ces}})$. In the case when $\Phi(t) = t^p$, $p > 1$ the Orlicz- Cesaro sequence space ℓ_Φ^{ces} becomes the Cesaro sequence space ℓ_Φ^{ces}, and the Luxemburg norm is that one defined by (1.1).

From now on, for $x = (x(1), x(2), \ldots, x(1), x(1), x(1))$, and
$$x_n = (0, 0, \ldots, x(i + 1), x(i + 2), x(i + 3), \ldots),$$
and
$$\supp x = \{i \in \mathbb{N} : x(i) \neq 0\}.$$

Results

We first give an important fact for $\|x\|_\Phi$ on ℓ_Φ^{ces}.

Lemma 2.1 If Φ is an \mathcal{N}-function, then for each $x \in \ell_\Phi^{\text{ces}}$ there exists $k \in \mathbb{R}$ such that
$$\|x\|_\Phi = \frac{1}{k}(\lambda + \rho_\Phi(\lambda x)).$$

Proof. For each $x = (x(1), \ldots, x(n)) \in \ell_\Phi^{\text{ces}}$, we have
$$x = \left(\frac{1}{n}\sum_{i=1}^n |x(i)|\right)^n \in \ell_\Phi^{\text{ces}}.$$
and \(k_n \to \infty \), then \(x = 0 \).

Proof. For each \(n \in \mathbb{N}, \eta > 0 \), put
\[
G_{(n, \eta)} = \left\{ i \in \mathbb{N} : \frac{1}{i} \sum_{i=1}^{n} |x_n(i)| \geq \eta \right\}.
\]
First, we claim that for each \(\eta > 0, G_{(n, \eta)} = \emptyset \) for all large \(n \in \mathbb{N} \). Otherwise, without loss of generality, we may assume that \(G_{(n, \eta)} \neq \emptyset \) for all \(n \in \mathbb{N} \) and for some \(\eta > 0 \). Then
\[
\|x_n\|_A = \frac{1}{k_n} \left(1 + \rho_\phi(k_n x_n) \right) \geq \frac{\Phi(k_n x_n)}{k_n} \quad \left(i \in G_{(n, \eta)} \right).
\]

By applying the assumption that \(\Phi \) is an \(\mathcal{N}^r \)-function, we obtain \(\|x_n\|_A \to \infty \), which contradicts to the fact that \(\{x_n\} \) is bounded, hence we have the claim. By the claim, we have \(\frac{1}{i} \sum_{i=1}^{n} |x_n(i)| \to 0 \) as \(n \to \infty \) for all \(i \in \mathbb{N} \). This implies that \(x_n(i) \to 0 \) as \(n \to \infty \) for all \(i \in \mathbb{N} \). Since \(x_n \rightharpoonup x \), we have \(x_n(i) \to x(i) \) for all \(i \in \mathbb{N} \), so it follows that \(x(i) = 0 \) for all \(i \in \mathbb{N} \).

Lemma 2.3 For any Orlicz function \(\Phi \), we have
\[
E < \{ x \in \mathcal{C} \mathcal{S}_\Phi : \|x - x_0\|_A \leq 0 \}.
\]

Proof. Write
\[
A = \{ x \in \mathcal{C} \mathcal{S}_\Phi : \|x - x_0\|_A \leq \varepsilon \}. \quad \text{Let } x \in E_\Phi \text{ and } \varepsilon > 0 . \quad \text{Since } x \in E_\Phi, \text{ there exists } i_0 \in \mathbb{N} \text{ such that } \rho_\phi \left(\|x - x_i\|_A \right) < \varepsilon \quad \text{for all } i > i_0 . \quad \text{Therefore, by the definition of } \| \cdot \|_A \text{ we have }
\]
\[
\varepsilon^{-1} \|x - x_i\|_A \leq 1 + \rho_\phi \left(\|x - x_i\|_A \right) < 1 + \varepsilon \quad \text{for all } i > i_0 .
\]
This yields \(\|x - x_i\|_A \to 0 \) as \(i \to \infty \) since \(\varepsilon \) is arbitrary. Hence \(x \in A \), proving the Lemma.

Theorem 2.4 The space \(\mathcal{C} \mathcal{S}_\Phi \) is (UKK) if \(\Phi \) is an \(\mathcal{N}^r \)-function which satisfies the \(\delta^2 \)-condition.

Proof. For a given \(\varepsilon > 0 \), by Theorem 1.2 there exists \(\delta \in (0,1) \) such that \(\|x\|_A \geq \varepsilon \) implies \(\Phi \left(\|x\|_A \right) \geq \delta \). Given \(x_n \in \mathcal{E} \mathcal{C} \mathcal{S}_\Phi \), \(x_n \rightharpoonup x \) weakly and \(\|x_n - x_m\|_A \geq \varepsilon (n \neq m) \), we shall complete the proof by showing that \(\|x\|_A \leq 1 - \delta \). Indeed, if \(x = 0 \), then it is clear. So, we assume \(x \neq 0 \). In this case, by Proposition 2.2 we have that \(\{k_n\} \) is bounded, where \(k_n \in K \{x_n\} \). Passing to a subsequence if necessary we may assume that \(k_n \to k \) for some \(k > 0 \). Since \(\Phi \in \delta^2 \), Lemma 2.3 assures that there exists \(j \in \mathbb{N} \) such that
\[
\|x_n - x_m\|_A \leq \varepsilon \quad \text{for all } n, m. \quad \text{This gives } \|x_n - x_m\|_A \leq \frac{\varepsilon}{2} \quad \text{for all } n, m \geq n_0 . \quad \text{If } k_n \leq 1, \text{ then it is clear. So, we assume } k_n > 1 . \quad \text{By using the convexity of } \Phi \text{ and the inequality } \Phi(a + b) \geq \Phi(a) + \Phi(b), \text{ we have }
\]
\[
1 - 2\delta \geq \|x_n - x_m\|_A - \rho_\phi \left(\|x_n - x_m\|_A \right) \geq \frac{1}{k_n} \rho_\phi \left(k_n x_n \right) \geq \|x_n\|_A \geq 1 - \delta ,
\]

176

hence \(\|x\|_\alpha \leq 1 - \delta \).

Theorem 2.5 If \(\Phi \) is an \(N' \)-function which satisfies \(\delta \)-condition, then \(c_0 \) has the uniform Opial property.

Proof. Take any \(\varepsilon > 0 \) and \(x \in c_0 \) with \(\|x\| \geq \varepsilon \). Let \((x_n) \) be weakly null sequence in \(S(c_0) \). By \(\Phi \in \delta_2 \), and Theorem 1.2, there is \(\xi \in (0,1) \) independent of \(x \) such that \(\rho \left(\frac{x}{\|x\|} \right) > \xi \). Also, by \(\Phi \in \delta_2 \), we have \(c_0 = E_\rho \). By Lemma 2.3, \(x \) is an order continuous element, this allows us to find \(j_0 \in \mathbb{N} \) such that

\[
\xi \leq \sum_{j=1}^{\infty} \Phi \left(\frac{1}{j} \sum_{i=j}^{\infty} |x(i)| \right) < \frac{\xi}{8}.
\]

It follows that

\[
\xi \leq \sum_{j=1}^{\infty} \Phi \left(\frac{1}{j} \sum_{i=j}^{\infty} |x(i)| \right) + \sum_{j=1}^{\infty} \frac{\xi}{8} < \frac{7\xi}{8}.
\]

From \(x_n \to \infty \), we have \(x_n(i) \to 0 \) for all \(i \in \mathbb{N} \), which implies that \(\rho \left(x_n \right) \to 0 \). By Theorem 1.2 we have \(\|x_n\| \to 0 \), so there exists \(n_0 \in \mathbb{N} \) such that \(\|x_n\| < \frac{\xi}{4} \) for all \(n > n_0 \).

Therefore,

\[
\|x + x_n\| = \|x + x_n - x + x_n\|_{\alpha} \geq 1 - \frac{\xi}{4}.
\]

Hence \(x_n \to x \) weakly. Since \(\Phi \) is an \(N' \)-function, by Lemma 2.1 there exists \(k_0 > 0 \) such that

\[
\|x_n + x_{n+k-1}\| = \frac{1}{k_0} \left(1 + \rho \left(k_0 \left(x_n + x_{n+k-1} \right) \right) \right) \leq \frac{1}{k_0} \left(1 + \rho \left(k_0 x_n \right) \right).
\]

This together with (2.2) and the fact that \(\rho \left(y + z \right) \geq \rho \left(y \right) + \rho \left(z \right) \) if \(\text{supp} \, y \cap \text{supp} \, z = \emptyset \), we have

\[
\|x + x_n\| \geq \frac{1}{k_0} \left(1 + \rho \left(k_0 x_n \right) \right) - \frac{\xi}{2} \geq \|x_n + x_{n+k-1}\| - \frac{\xi}{2}.
\]

We may assume without loss of generality that \(k_n \geq \frac{1}{2} \). Since \(2k_n \geq 1 \), by convexity of Orlicz function \(\Phi \) we have that \(\rho \left(k_n x_n \right) \leq 2 \rho \left(k_n x_n \right) \leq 2 \rho \left(x_n \right) \leq 2 \rho \left(\frac{x_n}{2} \right) = \frac{\xi}{2} \). Thus inequalities (2.1) and (2.3) imply that

\[
\|x + x_n\| \geq \|x_n + x_{n+k-1}\| + 2 \rho \left(\frac{x_n}{2} \right) = \frac{\xi}{2}.
\]

Theorem 2.6 If \(\Phi \) is an Orlicz function which satisfies \(\delta_2 \)-condition, then \(c_0 \) has the uniform Opial property.

Proof. Take any \(\varepsilon > 0 \) and \(x \in c_0 \) with \(\|x\| \geq \varepsilon \). Let \((x_n) \) be weakly null sequence in \(S(c_0) \). By \(\Phi \in \delta_2 \), we have \(\rho \in \delta_2 \). Thus by Theorem 1.2, there is \(\eta \in (0,1) \) independent of \(x \) such that \(\eta < \rho \left(x \right) \). Also, by \(\Phi \in \delta_2 \), Theorem 1.3 asserts that there exists \(\eta \in (0,\eta) \) such that

\[
\rho \left(y + z \right) \geq \rho \left(y \right) + \rho \left(z \right) \text{ if } \text{supp} \, y \cap \text{supp} \, z = \emptyset.
\]

This together with the assumption that \(x_n \to x \), there exists \(n_0 \in \mathbb{N} \) such that \(\frac{3n}{4} \leq \sum_{j=1}^{\infty} \Phi \left(\frac{1}{j} \sum_{i=1}^{\infty} |x(i)| \right) \). (2.6)

for all \(n > n_0 \), since the weak convergence implies the coordinatewise convergence. Again by \(x_n \to x \), there exists \(n_0 \in \mathbb{N} \) such that \(\rho \left(x_n \right) < \eta \) for all \(n > n_0 \). Hence, \(\frac{1}{n} - \frac{n}{4} = \rho \left(x_n \right) - \frac{n}{4} \leq \rho \left(x_{n+k-1} \right) \),

which deduces \(\liminf_{n \to \infty} \|x + x_n\|_{\alpha} \geq 1 + \frac{\xi}{8} \).
for all $n > n_1$. This together with (2.4), (2.5) and (2.6) imply that for any $n > n_1$,
\[
\rho_\phi(x_n + x) \geq \sum_{j=n_1}^{\infty} \Phi \left(\frac{1}{j} \sum_{i=1}^{j} x_i(i) + x(i) \right) + \sum_{j=n_1}^{\infty} \Phi \left(\frac{1}{j} \sum_{i=1}^{j} x_i(i) + x(i) \right)
\geq \frac{3\eta}{4} + \frac{\sum_{j=n_1}^{\infty} \Phi \left(\frac{1}{j} \sum_{i=1}^{j} x_i(i) + x(i) \right)}{\eta} - \frac{\eta}{4} = 1 + \frac{\eta}{4}.
\]
By $\rho_\phi \in \Delta'_2$, and by Theorem 1.4, there is τ depending on η only such that $\|x_n + x\| \geq 1 + \tau$.

Corollary 2.7 ([12, Theorem 2]) For any $1 < p < \infty$, the space c_0^p has the uniform Opial property.

ACKNOWLEDGMENTS

The author would like to thank the Thailand Research Fund(RGJ Project) for the financial support during the preparation of this paper. The first author was supported by The Royal Golden Jubilee Grant PHD/0018/2546 and Graduate School, Chiang Mai University.

REFERENCES