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ABSTRACT: In this paper, we introduce the generalized Rearick logarithm and give its series representation.
Moreover, we associate this log:

INTRODUCTION

By an arithmetic function, we mean a complex-
valued function whose domain is the set of positive
integers, N. We define the addition and convolution
of two arithmetic functions f and g, respectively, by

(f + g)(n) = f(n) + g(n), (j * g )(n) = 'L,Ja)g0).
ij=n

It is well known (see e.g. [1], [2], [3], [4], [7]) that
the set (Ae +, *) of all arithmetic functions is a unique
factorization domain with the arithmetic function

{ I ifn=l

0 otherwise
L(n) =

being its convolution identity
For notational conveniences, let

A~ = (f E Ac: f(1) E R}

Pc: = (f E Ac: f( 1) > O}, the so-called positive
elements of Ac

Vi = (j E Ac: f(1) = I}, the so-called normalized
units of Ac-

To facilitate later discussion, we recall some facts
about derivation over AC' which is a function
d : Ac ~ Ac satisfying

d( f * g) = df * g + f * dg , dCrf + sg) = rdf + sag,

for all j, g E AC' and for all f, s E C.
Recall that a E Ac is completely additive if a(mn)

= a(m)+ a(n) (\i m, n EN).

The derivation d associated with this additive
a E Ac is defined by

dj(n) = j(n)a(n) (n EN).

-
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lIithmi .c operator with other additive functions.

GENERALIZED REARICK LOGARITHM

Definition 2.1 Let a E Ac be a completely additive
arithmetic function for which a(n) '* 0 ('if n > 1), and
da its associated derivation. The logarithmic operator
(associated with a) is the map Log: Pc ~ A~, defined
by (Logf)(l) = logf(l) , where the right-hand side denotes
the real logarithmic value, and

1
= a(n) (daf * F1 )(n)

1
= a

(n ) If(d)F1(!!:.)a(d)

din d

Logf(n)

en > 1).

Remark. The logarithmic operator of Rearick
([5], [6]) uses the additive function logn in place of
a(n).

Theorem 2.2For all j,g E PC' we have

Loge j * g) = Log[ + Logg.

Proof. If n = 1, we see that

Log( f * g )(1) = log((f(1)g(1)) = logf(1) + logg(1)
= Logf(1) + Logg(r).

For n> 1, we have

1Log( f * g )(n) = a(n) (da (f * g) * (f * gfl )(n)

1--[(I * d g+ g* d f)* g-l *
f -1](n)- a(n) a a

1= a(n) (g-l * dog + r1 * daf)(n)

= Logf(n) + Logg(n).
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Theorem 2.3 For each h E A~, there is a unique f
E Pc such that h = Logf.

Proof. We proceed inductively Define f(l) =
exph(l). Assume that f(k) has been defined for all
k < n, where n> 1. The value f-l(k) are recursively

determined by the relation L r1 (d) I( -dk) = lie k =
Arb

1, and 0 elsewhere. This gives us a triangular system
which can be solved for the unknownsf-l(k). With
hen) prescribed and f(k), r(k) determined for all k
< n, we can define fen) by solving for the term
corresponding to d = n in the equation

hCn) == - C1

) LJCd)F1C- dn)aCd) a n din .

The term containing f-l(n) is suppressed by the
presence of the factor a(l) = 0, and all other terms
are known. This inductive process allows us to
construct a function f such that it satisfies the
condition h = Log{, and at the same time it guarantees

the uniqueness of this f. since the value of fen) is
uniquely determined at the nth step.

Theorem 2.4 Let f E Pc. Then f is multiplicative if
and only iflogf(n) = 0 whenever n is not a prime (positive)

power.

Proof. Assume that f is multiplicative. Then f(1)
= 1 and so Logf(1) = 10gf(1) = O. Let N be a positive
integer which is not a prime power. Then there are
positive integers m, n, both of them greater than 1
and (m, n) = 1 such that N = mn. We will show that
Logf(N) = O. We have

1 "" -1 mnLogf(N) = - ,L;f(d)f (-)a(d)
a(N) dlmn dLog{(N) =

= (IN) LL!(dl)!(d2)F1( dm)F1( dn )(a(dl)+a(d2)),

a d,lm d,ln I 2

where we have decomposed each d uniquely into
the product of a divisor dj of m and a divisor dz
of n. Thus

L(n) LI(~)rl(!!!..)a(dl)
a(N) ddm dl

L(m) L I(dz) I-I (.!:. )a(dz)
+ a(N) d,ln dz

Log/eN) =

0 (since L(n) = L(m) = 0).=

Conversely, suppose that Logf(n) = 0 whenever
n is not a prime (positive) power. Then Logf(1) =
0, so f(1) = 1. For n> 1, we let g E Pc be defined
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byg(l) = 1, g(n) = TIf(pV) where p4n,p...l J n.
pin

Clearly, g is multiplicative. It remains to show that
f = g. Observe that fen) = g(n) and j-!(n) = g-l(n)
whenever n is a prime power. From definition, we
have Logf(n) = Logg(n) if n is a prime power. Since
g is multiplicative, the previous half of this theorem
shows that Logg(m) = 0 if m is not a prime power.
Hence, Logf(n) = Logg(n) for all n E N and therefore
f = g by Theorem 2.3, proving our Theorem.

SERIES REPRESENTATION

Let F={uj:j=1,2,...} be a sequence of non-
negative integers Uj such that u\ = 0 and only finitely
many u. are non-zero. We call the sequence F a

)

factorization. Two factorizations are considered equal

'"

if and only ifthe sequences are identical.If rV"j = n,
j=\

we call F a factorization of n, and also say that n

'"

is the index of F and we write i(F) = n j"J = n. If
j=\

n> 1, one particular factorization of n is the identity
factorization, in which un = 1 and Uj = 0 if j * n. When
n = 1, the only factorization is the zero factorization
0, in which all Uj = O. We define the height hf of a

factorization F by hF = LUj, and also define the
)

partial ordering of factorizations as follows: F'::; F
if u' ::; Uj for all j. By F' < F we mean F'::; F and F'
"* F. The sum of any two factorizations is defined
as the termwise sum of the sequences, Le., F + F'
= {u + u'}. If F'::; F, we define the difference F-

} }F' = {Uj-u/}, Clearly, i(F+F') =i(F)i(F') andi(F-F')

i(F)

. If F is a factorization and f E A" we define-
i(F?

n (fU))"'
jIF:

If we adopt the convention that 0° = 1, then the
product may be considered to be extended for all
j ~l, with only finitely many factors different
from 1.

If F = {u) is a factorization, set F! = If(UjO, If F'

(F) F! ::;; F, we define F' = F'!(F-F')!'
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If r is any real number, set (~) = 1, and if F> 0,

( r ) r(r-l)...(r-h+l) define F = F! where h = hFdefine (;) = ~

is the height of F.

=

Theorem 3.1 For all f e VI,(h) (_l)h+1 r
i(F)~,h>O F h

Logf(n) =

where h = hF is the height of F.

Proof. If n = 1, the index set of the above sum
is empty and the sum is understood to have the value
zero, which is compatible with Logf(l) = log 1 = O.
For each n> 1, by definition we have

Log!(n)a(n) = daLog!(n) = (dj *j-1)(n) = (dj * Lr ~)F)(n)

= L c(F)r
i(F)=n

wherec(F) = ~(F-~ ] }(i(])). SinceF> 0<::> h= hF>

(h)a(n)
0, Lemma 3 of [6] yields c(F) = (-l)h+l F h, and

the result follows.

- fen)
Theorem 3.2 Letf E Pc and fen) = f(1) (n

Then Logf(l) = logf(l) and

(h) (-l)h+l"f Logf(n) = j(f)~h>O F h (n> 1),

where h = hf is the height of F.

Proof. The value at n = 1 follows frorr

- f(l) -
definition. Since f(1) = f(O = 1, we have f

and hence Theorem 3.1 gives
- (h) (-Oh+lJf Logf(n) = L (n

i(f)=n,h>O F h

We now have
a(n) Lof1(n) = d. Lof1(n) (r

- fen)
Theorem 3.2Letf E Pc and fen) = f(l) (n EN).

Then Logf(l) = logf(l) and
, - -

Proof. The value at n = 1 follows from the

- f(1)
definition. Since f(1) = f(1) = 1

and hence Theorem 3.1 gives

LoifCn) = L (h) c-nh+ljP
i(F)=n,h>O F h en> 1).

da LogrCn)

LfCd)f-1C~)aCd)din d

=

=
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L fed) r1(!:)f(l)a(d)
din f(1) d .

(using J-l(!:) = r1(!:)f(l))
d d

=

where h = hF
= L,f(d)F1(!!:.)a(d)

din d
= a(n)Log(n)

and the desired result follows from Theorem 3.1.

LOGARITHMIC OPERATORS ASSOCIATED WITH OTHER
ADDITIVE FUNCTIONS

The logarithmic operator, defined in section 2,
is associated with an additive function a(n) which
is non-zero for all n > 1. This is modified upon
Rearicks operator where a(n) = log n.

For a general additive function v(n), a similar
logarithmic operator can also be defined by dropping
the normalized term v(n) as follows:

Ly: Pc ~ A~
LJ(l) = logf(l) n
L fen) = (d f * J-I)(n) = L f(d)v(d)f( -) .

y y din d

Theorem 4.1(i) For all f,g E Pc' we have L/f * g)
= Lvi + Lyg

(ii) Let f E Pc' Then f is multiplicative if and only if
Logf(n) = 0 whenever n is not a prime (positive) power.

L( ~ )f)(n)

(by Theorem 3 of [6])

(by Corollary 2a of [6])

Proof. The proof is similar to that of Theorems
2.2 and 2.4.

- fCn)
Theorem 4.2Letf e Pc and fCn) = f(1) Cn eN).

Then for n> 1,

(h} C-nh+lr LvfCn) = v(n) i(~=n F h Ch = hF).
(h=hF).

Proof. We use the same argument as that given
in Theorem 3.2.
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