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The effect of compressibility to turbulent flows is
found to be important for the flows through gas turbine,
propulsion and supersonic airplane where the density
changes rapidly and strongly. There are several terms
directly reflect the effect of compressibility on the
turbulence structure. Among these are the dilatation
dissipation, the pressure dilatation and the enthalpy
production. However, the present work is focused on
the pressure dilatation term. The pressure dilatation is
investigated to account for the extra source term that
appears explicitly in the turbulence transport equation
for compressible turbulent flows, due to the non-
divergent fluctuating velocity field. The pressure
dilatation refers to the work done due to simultaneous
fluctuations in the volume of the fluid cell corresponding
to the fluctuations in pressure and can be either positive
or negative. The negative value represents a dissipation
effect on the kinetic energy of the fluctuations and the
positive value represents a production effect. The
correlation between the pressure and the dilatation
was found to play an important role in the exchange of
energy,1 which is also a specific phenomenon for
compressible flows and can change the amount of
turbulence kinetic energy rapidly.

The effect of pressure dilatation on the turbulence
structure is a difficult issue in turbulence modeling.
Modeling issues in both the production and dissipation
of turbulence kinetic energy need to be addressed to
account for Mach number effects. The modifications
of this model were proposed by Zeman,1 Sarkar,2 El Baz
and Launder,3 Krishnamurty and Shyy,4 and Lejeune
and Kourta5 to simulate the effect of this dilatational

term. Fujiwara and Arakawa6 have attempted to
correlate the pressure fluctuation and the dilatation
terms based on the direct numerical simulation (DNS)
data of compressible isotropic and homogeneous
sheared turbulence. They have found that the
correlation between these two terms can be devised to
reflect the effects of turbulence Mach number and the
ratio of the production to dissipation rate of turbulence
kinetic energy. Different expressions of the pressure
dilatation model proposed by different researchers
have been studied and it is found that the pressure
dilatation model proposed by Fujiwara and Arakawa6

gives the most accurate results for predicting the
characteristics of compressible turbulent flow.
Furthermore, the model is easily applied to wider
applications and simple to solve. Therefore, the model
of Fujiwara and Arakawa6 is modified in this work for
using with the compressible low-Reynolds-number q-
ζ turbulence model.

The study of compressible turbulent flow is
governed by the conservation of mass, momentum,
energy and state equations. The turbulent effect is
taken into account by the compressible low-Reynolds-
number q-ζ turbulence model proposed by Gibson and
Dafa’Alla7 to improve the prediction of the flow
characteristics near the wall, where the two dependent
variables are q (= � ) and ζ ( = ε/2q ). The square root
of turbulence kinetic energy (q) is preferred to the
turbulence kinetic energy (k) because in the region
very close to the wall, q varies linearly with distance y.
The destruction rate of the square root of turbulence
kinetic energy (ζ) is better behaved than the dissipation
of turbulence kinetic energy (ε). Furthermore, both q
and ζ are zero at the wall and numerical problems are

ScienceAsia 29 (2003): 	
��	�

�������������� ������������� ���!�ζζζζζ� ��� ����"�
#�$���%����&�����������������������

'����(����)��������*���$�+����,��-���%��(�����

����������	�
� ����	���� ����������� ������� ������	�� ��� ����	���
� �	��	��	��� ����
��

��� �	��	��	��� ��������� �	���������  �	�!�!� "#$##�� %���
�	&'

(�������	&�	�� �������� �)���
*� ����!+!�'��'��

��������� �� 	
�� ��

	�������� ��� ���� ��

+./��+��  The new compressible low-Reynolds-number q-ζ turbulence model is developed via the pressure
dilatation model in order to account for the compressibility effects. The effects of the turbulent Reynolds
number, the turbulence Mach number and the ratio of the production to the dissipation rate of square root
of the turbulence kinetic energy are incorporated in the model for the pressure-dilatation correlation. The
efficiency of the proposed model is evaluated using the compressible turbulent boundary layer flow on a flat
plate at subsonic and supersonic speeds as a test case. It is found that the predicted results from the proposed
model are in good agreement with the universally accepted data especially in the outer region of the
boundary layer.

KEYWORDS: turbulence model, pressure dilatation, compressibility effects.
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alleviated because there is no need to calculate terms
like ( )������ ∂∂ν= , which are needed to provide a
derived boundary condition for ε in the k-ε model.

The q-ζ model was validated using the DNS data of
channel flow and boundary layers,7 and it was then
applied to the calculation of the flow over 2D backward
facing steps by Gibson and Harper.8 The results showed
that the q-ζ model compared well with the k-ε model
in separated flows behind the steps even with the use
of coarser calculation mesh. In a further development,
Dafa’Alla, et al 9-10 applied the model to boundary layers
with periodic variation of free-stream velocity and time-
mean adverse pressure gradient, and Gibson and
Harper11 calculated the heat transfer from an impinging
jet. The predictions compared well with the
corresponding experimental data and with the k-ε
model, and the q-ζ model was the more economical
with coarser grids and less computing time required
for convergence compared with the other methods.

The present work aims to develop and evaluate the
efficiency of the proposed compressible turbulence
model for the flow predictions in steady compressible
turbulent boundary layer past a flat plate by applying
the low-Reynolds-number q-ζ  turbulence model
together with the pressure dilatation model of Fujiwara
and Arakawa.6

0�'�����0� �1�+����/

Compressible flow is governed by the continuity,
Navier-Stokes, energy and state equations. For
turbulent compressible flow, these governing equations
are essentially time-averaged using the density-

weighting technique called Favre averaging and the
resulting solution represents the mean quantities. This
technique gives rise to the extra-unknown terms that
cause a closure problem. This problem can be solved
using an appropriate turbulence model. For steady
two-dimensional mean flow, the governing equations
with the turbulence model can be expressed in terms
of tensor notation as follows:

Continuity EquationContinuity EquationContinuity EquationContinuity EquationContinuity Equation

(1)

NavierNavierNavierNavierNavier-Stokes Equation-Stokes Equation-Stokes Equation-Stokes Equation-Stokes Equation
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where ��
	  is defined as
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The eddy viscosity ( �µ ) can be defined as

 (8)

The Favre-averaged equations for q and ζ are given by

(9)

(10)

where ���� ������ ζζζζζσ  and ψ  are equivalent to ������ ���� −− εεεεεσ ����  and 
��

�
, respectively, in the low-

Reynolds-number k- ε  models. The constants ( )��	 ������� εεµεσσ , damping functions ( )�� ��� εε  and �  are

adopted from the low-Reynolds-number k- model of Launder and Sharma13 in Table 1.
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where the turbulent Reynolds number is defined as

 (13)

Equation of State

 (14)

Sutherland’s Law

 (15)

Prandtl Number

 (16)
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The pressure dilatation term is resulted from using
Favre-averaging on the square root of turbulence
kinetic energy equation that represents in the last term
of Equation (9). The model for pressure-dilatation
correlation incorporates the effects of the turbulent
Reynolds number (Re

t
), turbulence Mach number (M

t
)
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The extra term E is

(11)

The damping function  proposed by Gibson and

Dafa’Alla7 is written as

(12)
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and ratio of the production to the dissipation rate of square root of the turbulence kinetic energy (P
q
/ζ).

 The model can be expressed as (Fujiwara and Arakawa6)

       =  (17)

where and are the pressure variance and the dilatation variance, respectively.
 The pressure variance is related to the velocity fluctuation and the function of the ratio of production to

dissipation rate of the square root of turbulence kinetic energy as:

����

where

The dilatation variance appears in the dilatation dissipation term (ζ) and is related to turbulence Mach number
as:

 (19)

where  and is the speed of sound.

 The correlation coefficient (fΠ
d
) is included in the magnitude part and the sign part. The magnitude part

depends on the turbulent Reynolds number and the sign part depends on the effect of P
q
/ζ.

(20)

Finally, a model for pressure dilatation is

(21)

where             ,       and the constants are as in Table 2. The expression in the above

equation  shows that the pressure dilatation model is a function of the turbulent Reynolds number, the turbulence
Mach number and the ratio of the production to the dissipation rate of square root of the turbulence kinetic
energy.
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The finite volume method is used to numerically solve the governing equations, which can be written in a
general form as follows:

 (22)
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where is the general dependent variable, is the effective
diffusion coefficient, and is the source/sink term of . To
simulate the internal flow with variable cross-sectional
area and the external flow past an object of complex
shape, the general form of the governing equations is
essentially transformed from the physical domain into
the computational domain using the following equation:
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(23)

where

             , ,

             ,      ,            ,

.

Using the finite volume method, the computational domain is divided into a number of control volumes. The
transformed equations can be integrated as follows:

(24)

where φ
!
)  is the mean value of φ)  at the center P of each control volume, and (e, w, n, s) are the east, west, north

and south faces of each control volume. The convection terms are approximated by the first-order upwind
differencing scheme and the diffusion terms are estimated by the second-order central differencing scheme.
Therefore, the standard form of the finite volume equation can be obtained as

(25)

where

               ,         ,

               ,     ,

           ,

         .

The standard SIMPLE algorithm14 is employed here to satisfy the conservation law of mass. The continuity
equation is not solved directly with other governing equations. The �′ -equation is solved instead to obtain the
pressure correction �′ and its value is used to correct the values of pressure and velocities to satisfy the
conservation law of mass. The �′ -equation can be written in a standard form as follows:

 (26)
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,  ,  ,   ,

             ,           .

3+ and 3�   are calculated from the resulting velocities of the Navier-Stokes equations, whereas

 , (27)

where

              , ,  ,    .

In general, the standard SIMPLE algorithm is implemented on the staggered grid system to prevent the
decoupling between the velocity and the pressure. However, the staggered grid system is technically rather
complicated for programming and requires a large amount of computer storage. This drawback becomes obvious
when the computer program is developed further for real-world applications. The collocated grid system is
employed in this work so that all the variables are stored at the center of each control volume. The problem of
velocity-pressure decoupling is solved by the Rhie and Chow interpolation15 where ( 3

�+ , 3
-+ , 3

'� , 3
,� ) are

calculated from the appropriate pressure gradient.
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The test case for compressible turbulent flow over a flat plate is chosen in this work to evaluate the efficiency
of the compressible q-ζ turbulence model together with the pressure dilatation model in predicting the compressible
turbulent boundary layer. According to grid independent study, a grid of 151 × 151 nodes in cross-stream and
streamwise directions is used respectively. The schematic representation of flat plate can be seen in Fig 1.

 The performance of the model is evaluated via the closeness of the compared parameters to the universally
accepted data in comparison with the conventional compressible q-ζ turbulence model. The compared parameters
and the universally accepted data are shown in Table 3. The comparison will be presented for parameters at Mach
number 0.82 and 1.50.
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Fig 1.Fig 1.Fig 1.Fig 1.Fig 1. Schematic representation of computational domain.
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Inner RegionInner RegionInner RegionInner RegionInner Region
The law of the wall represents the velocity profile

outside the laminar sublayer and in the logarithmic
region (3.6 < y+ < 8.0), which is expressed as

 (28)

where the values of constants κ and were taken as
0.4 and 5.1, respectively.

The transformed velocity (u*) that is derived
from the Van Driest transformation19 and the concept
of temperature recovery factor (r) is given by

 (29)

where

               , and              .

Fig 2 shows the velocity distribution of the turbulent
boundary layer on a flat plate at Mach number 0.82
where the computed results are compared with the law
of the wall. It is found that in the logarithmic region, the
velocity distribution of the model with pressure
dilatation shifts from the law of the wall. This is because
the pressure dilatation model takes into account the
damping effect of pressure variation near the wall that
results in the increase of the velocity distribution in the
boundary layer.

 The velocity distribution at Mach number 1.50 is
shown in Fig 6. The deviation of velocity distribution
of model with pressure dilatation is higher than the
case of Mach number 0.82 because the effect of Mach
number on the velocity distribution is brought to bear
through the increase of temperature in the direction of
the wall.

Outer RegionOuter RegionOuter RegionOuter RegionOuter Region
Maise and McDonald16 correlation extends the

validity of the Van Driest transformation to the outer
region of boundary layer by introducing u* into the
velocity defect law with a finite wake component. In the
experiment of Motallebi20, it also predicts the correct
trend of the data. Maise and McDonald correlation is
defined as

����

���	��τ�� �����������

Fig 3 and 7 show the velocity distribution of the
turbulent boundary layer on a flat plate at Mach number
0.82 and 1.50 respectively, where the computed results
are compared with Maise and McDonald correlation.
It is found that the computed results of the developed
model are in good agreement with this correlation at

outer region (0.2 ≤
δ
� ≤ 1.0). This is a consequence of the

pressure dilatation model in the compressible
turbulence model.

 Fernholz and Finley17 have achieved a better
correlation for the outer region of boundary layer with
a semi-empirical semiempirical relationship. In this
expression, the constant terms are obtained from a
correlation of experimental data. Fernholz and Finley
correlation compares very well with the experimental
data of Motallebi.20 Fernholz and Finley correlation is
defined as

(31)

where          .

Fig 4 and 8 show the comparison of velocity
distribution with Fernholz and Finley correlation at
Mach number 0.82 and 1.50, respectively. It is found
that the results of the model with pressure dilatation
are closer than the model without pressure dilatation.

Skin Friction CoefficientSkin Friction CoefficientSkin Friction CoefficientSkin Friction CoefficientSkin Friction Coefficient
The skin friction coefficient values are deduced

using the expression proposed by Nash and
MacDonald18 correlation, which depends on the integral
quantities of boundary layer. Nash and MacDonald
correlation is expressed as

 (32)

in which

 (33)
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with β = 0 in the present work.
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Fig 2.Fig 2.Fig 2.Fig 2.Fig 2. Velocity distribution of the turbulent boundary layer on a flat plate at Mach number 0.82 for inner region.

Fig 3.Fig 3.Fig 3.Fig 3.Fig 3. Velocity distribution of the turbulent boundary layer on a flat plate at Mach number 0.82 for outer region (compared with the
Maise and NcDonald correlation).

Fig 4.Fig 4.Fig 4.Fig 4.Fig 4. Velocity distribution of the turbulent boundary layer on a flat plate at Mach number 0.82 for outer region (compared with the
Fernholz and Finley correlation).
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Fig 5.Fig 5.Fig 5.Fig 5.Fig 5. Skin friction coefficient distribution of the turbulent boundary layer on a flat plate at Mach number 0.82.

Fig 6.Fig 6.Fig 6.Fig 6.Fig 6. Velocity distribution of the turbulent boundary layer on a flat plate at Mach number 1.50 for inner region.

Fig 7.Fig 7.Fig 7.Fig 7.Fig 7. Velocity distribution of the turbulent boundary layer on a flat plate at Mach number 1.50 for outer region (compared with the
Maise and McDonald correlation).
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 Fig 5 and 9 show the comparison of the skin friction
coefficient distribution with Nash and MacDonald
correlation at Mach number 0.82 and 1.50, respectively.
It is found that the computed results of the model with
pressure dilatation are in reasonable agreement with
Nash and MacDonald. The effect of pressure dilatation
model causes the skin friction coefficient to increase
compared to the model without pressure dilatation for
both Mach numbers.

 The deviation in the results is due to the coefficient
of skin friction and does not include the effect of the
laminar initial length. In reality, the boundary layer is
laminar to begin with, undergoes transition, and changes
to turbulence further downstream. The existence of
the laminar section causes the skin friction coefficient
to decrease. Additionally, the increases in the Mach
number and the viscosity result in the decrease in the
skin friction coefficient.

Fig 9.Fig 9.Fig 9.Fig 9.Fig 9. Skin friction coefficient distribution of the turbulent boundary layer on a flat plate at Mach number 1.50.

Fig 8.Fig 8.Fig 8.Fig 8.Fig 8. Velocity distribution of the turbulent boundary layer on a flat plate at Mach number 1.50 for outer region (compared with the
Fernholz and Finley correlation).
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The compressibility effects are incorporated in the
low-Reynolds-number q-ζ turbulence model via the
modification of the pressure dilatation model of
Fujiwara and Arakawa. The effects of the turbulent
Reynolds number, the turbulence Mach number and
the ratio of the production to the dissipation rate of the
square root of turbulence kinetic energy are
incorporated in the model for the pressure-dilatation
correlation. The computed results using the developed
model are compared with the universally accepted data
for two-dimensional compressible equilibrium
turbulent boundary layers. It is found that the predicted
solutions using the developed model are in good
agreement with the experimental data especially in the
outer region of the boundary layer.





∆�

�
��

τ

δ −
�

��
��

�

�

�

�

�

��

�� ���	 �� ���	 ��

�	�������������	������

��	���������	����	����������

��	������������	����	����������

 



�

�������
�

������

������

������

������

������

������

������

������

���� �� ���� �� ���� �� ����

����� �!�"#	�����$��%

�	�����������������������	�

�	�������	������������������	�



ScienceAsia ScienceAsia ScienceAsia ScienceAsia ScienceAsia 29 (2003)29 (2003)29 (2003)29 (2003)29 (2003) 	�

+�,��:3��0�#���/

This research is partially supported by the Thailand
Research Fund for ( to Professor Pramote
Dechaumphai), the Kasetsart University Research and
Development Institute and the Thesis and Dissertation
Support Fund, Graduate School, Kasetsart University.
Special thanks are due to Professor Pramote
Dechaumphai and Assistant Professor Ekachai
Juntasaro.

Appendix A. NomenclatureAppendix A. NomenclatureAppendix A. NomenclatureAppendix A. NomenclatureAppendix A. Nomenclature

a = parameter in Van Driest transformation; speed of sound,

b = parameter in Van Driest transformation

C
f

= skin friction coefficient

C
P

= specific heat at constant pressure

C
V

= specific heat at constant volume

Cµ = model constant for eddy viscosity

Cε
1
, Cε

2
, Cζ

1
, Cζ

2
 = model constants for turbulence model

C
p1

, C
p2

, C
pe

, C
re
, CΠ

d
 = model constants for pressure dilatation model

c = intercept for Coles law of the wall

D = extra term for turbulence kinetic energy equation

d = dilatation part

E = extra term for dissipation rate of turbulence kinetic

energy equation

e = internal energy

e
T

= specific total energy

F
C
, F

R
 = parameters in Nash and MacDonald skin friction

correlation

fµ = damping function for eddy viscosity

fε
1
, fε

2
, fζ

1
, fζ

2
 = model functions for turbulence model

fΠ
d
= correlation coefficient between pressure and dilatation

fluctuation

G = parameter in Nash and MacDonald skin friction

correlation

K = kinetic energy

k = turbulence kinetic energy

k
T

= thermal conductivity

M = Mach number

M
t
= turbulence Mach number

p = pressure

Pr = Prandtl’s number

P
q

= production of the square root of turbulence kinetic

energy

q = square root of turbulence kinetic energy

R = gas constant, 287 J/kg.-K for air

Re
t
= turbulent Reynolds number

Reθ = momentum thickness Reynolds number

r = temperature recovery factor, 0.89

T = temperature

t = laminar shear stress

u = velocity

uτ = friction velocity

y = wall-normal coordinate

y+ = dimensionless distance from wall, yρ
w
uτ/µ

w
 for inner

region and y/δ for outer region

 δ = boundary-layer thickness

 δ
ij

= Kronecker delta, for and for

 ∆* = integral length scale

 ε = rate of dissipation of turbulence kinetic energy

 γ = ratio of specific heat, 1.4 for air

 κ = slope for Coles law of the wall

 µ = fluid viscosity

 µ
t

= eddy viscosity

 ν = kinematic viscosity

 ρ = density

 σ
q
, σζ = model constants for turbulent diffusion

 τ = turbulent shear stress

 ζ = rate of dissipation of the square root of

turbulence kinetic energy

SubscriptsSubscriptsSubscriptsSubscriptsSubscripts

 w = evaluated based on wall parameters

 δ = boundary-layer edge

 ∞ = freestream

SuperscriptsSuperscriptsSuperscriptsSuperscriptsSuperscripts

 ′ = fluctuation part of Reynolds decomposition

 ′′ = fluctuation part of Favre decomposition

 − = Reynolds average

 ∼ = Favre average

 * = tranformed condition
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