The Central Limit Theorems for Sums of Powers of Function of Independent Random Variables

K Laipaporn^a and K Neammanee^{*, b}

- ^a Department of Mathematics, Walailak University, Nakhon Sri Thammarat 80160, Thailand.
- ^b Department of Mathematics, Chulalongkorn University, Bangkok 10330, Thailand

* Corresponding author, E-mail: k_neammanee@hotmail.com

Received 22 Feb 2001 Accepted 11 Sep 2001

ABSTRACT Let (X_{nk}) , $k = 1, ..., k_n$; n = 1, 2, ... be a double sequence of infinitesimal random variables which are rowwise independent. In this paper, we give necessary and sufficient conditions for the

sequence of distribution functions of $S_n^{(r)} = (g(X_{n1}))^r + L + (g(X_{nk_n}))^r - B_n(r)$ to weakly converge to a limiting distribution function *F*, for each natural number *r*, and also for convergence of (*F*.).

KEYWORDS: central limit theorem, infinitely divisible, Le'vy's formula. **Mathematics Subject Classification**: (2000):60E07, 60F05, 60G50.

INTRODUCTION

Let (X_{nk}) , $k = 1, ..., k_n$; n = 1, 2, ... be a double sequence of infinitesimal random variables which are rowwise independent. Let $S_n = X_{n1} + L + X_{nk_n} - A_n$, where A_n are constants and let G_n be the distribution functions of S_n . Necessary and sufficient conditions for (G_n) to converge to a distribution function G are known, and in particular it is well known that G is infinitely divisible.

In 1957, Shapiro¹ considered the limit distribution functions of the sums $|X_{n1}|^r + L + |X_{nk_n}|^r - B_n(r)$,

where $B_n(r)$ are suitably chosen constants and $r \in N$.

In 1974-1988, Shapiro²⁻⁴ and Termwuttipong⁵ gave the conditions which guarantees that the distribution functions of the sums $|X_1|^r + |X_2|^r + L + |X_n|^r$ converge to a limit for r < 0.

In 1998, Neammanee⁶ gave the conditions for convergence of distribution functions of $\left| \ln X_1 \right|^r$ +

$$\left| \ln X_2 \right|^r + L + \left| \ln X_n \right|^r$$
 for $r < 0$.

MAIN OF OBJECTIVE

In this work, we consider the distribution functions of the sums

$$S_n^{(r)} = \left(g\left(X_{n1}\right)\right)^r + \mathbb{L} + \left(g\left(X_{nk_n}\right)\right)^r - B_n(r)$$

where $r \in N$ and $g: \mathbf{R} \to \mathbf{R}$ satisfies the following properties:

- (g-1) g(0) = 0,
- (g-2) g is continuous, strictly decreasing on $(-\infty, 0]$ and strictly increasing on $[0,\infty)$,
- (g-3) there exist positive constants δ and *c* such

that
$$\left| \frac{g(x)}{x} \right| < c$$
 for all $x \in (-\delta, \delta)$,

 $(g-4) \quad g(-\infty) = g(\infty) = \infty.$

Since g satisfies (g-1) and (g-2), we can write

$$g(x) = \begin{cases} g_1(x) & \text{if } x \ge 0; \\ g_2(x) & \text{if } x < 0. \end{cases}$$

where $g_1: g_1: \mathbf{R}_0^+ \to \mathbf{R}_0^+$ defined by $g_1(x) = g(x)$ and

 $g_2 : \mathbf{R}_0^- \to \mathbf{R}_0^+$ defined by $g_2(x) = g(x)$. Since *g* is continuous at 0 and g(0) = 0, we can assume the δ in (g-3) has properties $g_1(\delta) < 1$ and $g_2(-\delta) < 1$. The followings are examples of *g*,

1.
$$g(x) = c |x|^n$$
 for $c > 0$ and $n \in N$
2. $g(x) = \begin{cases} x + \sin x & \text{if } x \ge 0; \\ -x + \sin x & \text{if } x < 0. \end{cases}$

So Shapiro's results are our special case.

From now on, for $r \in N$, we let $F_n^{(r)}$, $F_{nk}^{(r)}$, F_{nk} be the distribution functions of $S_n^{(r)}$, $(g(X_{nk}))^r$ and X_{nk} respectively and for infinitely divisible distribution function F_r , we let M_r , N_r , γ_r , σ_r^2 be M, N, γ, σ^2 in Le'vy's formula of F_r , (Petrov⁷, chapter II). The necessary and sufficient conditions for convergence of the sequence of distribution functions of $S_n^{(r)}$ and the sequence of distribution functions F_r are given in Theorem A and Theorem B which stated below.

Theorem A Assume that $G_n \xrightarrow{w} G$ as $n \to \infty$. Then for each $r \in N$ and for suitably chosen constants $B_n(r), F_n^{(r)} \xrightarrow{w} F_r$ as $n \to \infty$ if and only if

1

$$1. \lim_{\varepsilon \to 0^{+}} \limsup_{n \to \infty} \sum_{k=1}^{k_n} \left\{ \int_{0}^{z_1} \int_{0}^{z_1^{-1}} (g(t))^{2r} dF_{nk}(t) + \int_{g_2^{-1}(z_1^{-1})}^{0} (g(t))^{2r} dF_{nk}(\bar{t}) - \left(\int_{0}^{z_1^{-1}(z_1^{-1})} (g(t))^{r} dF_{nk}(t) + \int_{g_2^{-1}(z_1^{-1})}^{0} (g(t))^{r} dF_{nk}(\bar{t}) \right)^{2} \right\} = \sigma_r^2 < \infty$$

and

2.
$$\lim_{\varepsilon \to 0^{+}} \liminf_{n \to \infty} \sum_{k=1}^{k_n} \left\{ \int_{0}^{1-\frac{c}{p'}} (g(t))^{2r} dF_{nk}(t) + \int_{g_2^{-1}(\varepsilon)}^{0} (g(t))^{2r} dF_{nk}(t) \right\}$$

$$-\left(\int_{g_{1}^{-1}(e^{r})}^{g_{1}^{-1}(e^{r})} \left(g(t)\right)^{r} dF_{nk}(t) + \int_{g_{2}^{-1}(e^{r})}^{g_{1}^{-1}} \left(g(t)\right)^{r} dF_{nk}(t^{-})\right)^{2} = \sigma_{r}^{2} < \infty.$$

Theorem B Let $G_n \xrightarrow{w} G$ and $F_n^{(r)} \xrightarrow{w} F_r$ as $n \to \infty$ for all $r \in N$. Then $F_r \xrightarrow{w} H$ and $r \to \infty$ if and only if

- 1. M(x) = 0 for all $x < g_2^{-1}(1)$
- 2. N(x) = 0 for all $x > g_1^{-1}(1)$
- 3. $\lim \sigma_r^2 = (\sigma^*)^2$

1

where the functions *M*, *N* are functions in Le'vy's formula of *F* and σ^* is the constant in Le'vy's formula of *H*. Moreover, we know that

- 4. if $\sigma^* = 0$, *M* is continuous at $g_2^{-1}(1)$ and *N* is continuous at $g_1^{-1}(1)$ then *H* is degenerate
- 5. if $\sigma^* \neq 0$, *M* is continuous at $g_2^{-1}(1)$ and *N* is continuous at $g_1^{-1}(1)$ then *H* is normal
- 6. if $\sigma^* = 0$, *M* is discontinuous at $g_2^{-1}(1)$ or *N* is discontinuous at $g_1^{-1}(1)$ then *H* (*x m*) is Poisson, for some constant *m*

7. if $\sigma^* \neq 0$, *M* is discontinuous at $g_2^{-1}(1)$ or *N* is

discontinuous at $g_1^{-1}(1)$ then *H* is the distribution function of the sum of two independent random variables one of which is normal and the other is Poisson.

PROOFS OF MAIN RESULTS

Before we prove the main results we need the following lemmas.

Lemma 1 Let $X \sim N(a, \sigma^2)$ and $Y \sim Poi(\lambda)$. If *X* and *Y* are independent, then Le'vy's formula of the characteristic function of *X* + *Y* is

$$\log \varphi_{X+Y}(t) = i(a+\frac{\lambda}{2})t - \frac{1}{2}\sigma^2 t^2 + \int_0^\infty (e^{i\alpha} - 1 - \frac{itx}{1+x^2})dK(x),$$

where $K: \mathbf{R}^+ \to \mathbf{R}$ is defined by $K(x) = \begin{cases} -\lambda & \text{if } 0 < x \le 1; \\ 0 & \text{if } x > 1. \end{cases}$

Proof Let φ_X and φ_Y be the characteristic functions of *X* and *Y*, respectively. From Lukacs⁸ p93, we have

$$\log \varphi_{\mathcal{X}}(t) = iat - \frac{1}{2} \sigma^2 t^2 \text{ and } \log \varphi_{\mathcal{Y}}(t) = i\frac{\lambda}{2}t + \int_0^\infty (e^{itx} - 1 - \frac{itx}{1 + x^2}) dK(x).$$

Since *X* and *Y* are independent,

 $\log \varphi_{X+Y}(t) = \log \varphi_X(t) \varphi_Y(t)$

$$= \log \varphi_{\mathcal{X}}(t) + \log \varphi_{\mathcal{Y}}(t)$$

$$= iat - \frac{1}{2}\sigma^{2}t^{2} + i\frac{\lambda}{2}t + \int_{0}^{a} (e^{ix} - 1 - \frac{itx}{1 + x^{2}})dK(x)$$

$$= i(a + \frac{\lambda}{2})t - \frac{1}{2}\sigma^{2}t^{2} + \int_{0}^{a} (e^{ix} - 1 - \frac{itx}{1 + x^{2}})dK(x). \quad \#$$

Lemma 2 If $G_n \xrightarrow{w} G$ as $n \rightarrow \infty$ then for every $r \in N$

1. $\lim_{n \to \infty} \sum_{k=1}^{k_n} \mathcal{F}_{nk}^{(r)}(x) = 0 \text{ for all } x < 0 \text{ and}$ 2. $\lim_{n \to \infty} \sum_{k=1}^{k_n} (\mathcal{F}_{nk}^{(r)}(x) - 1) = N(g_1^{-1}(x^{\frac{1}{r}})) - M(g_2^{-1}(x^{\frac{1}{r}})) \text{ a.e. on } (0, \infty).$

Furthermore, if $F_n^{(r)} \xrightarrow{w} F_r$ for every $r \in N$ then for each $r \in N$, we have

3. $M_r = 0$ on $(-\infty, 0)$ and

4.
$$N_r(x) = N(g_1^{-1}(x^{\frac{1}{r}})) - M(g_2^{-1}(x^{\frac{1}{r}}))$$
 a.e. on $(0,\infty)$,
where *M* and *N* are functions in Le'vy's formula of *F*.

Proof Note that

$$F_{nk}^{(r)}(x) = \begin{cases} 0 & \text{if } x < 0; \\ P(X_{nk} = 0) & \text{if } x = 0; \\ F_{nk}(g_1^{-1}(x^{\frac{1}{r}})) - F_{nk}(g_2^{-1}(x^{\frac{1}{r}})^{-}) & \text{if } x > 0 \end{cases}$$

and
$$F_{nk}^{(r)}(x) = \begin{cases} 0 & \text{if } x < 0; \\ & \\ F_{nk}^{(1)}(x^{r}) & \text{if } x \ge 0. \end{cases}$$
 ...(2.2)

So 1. follows from (2.1). To prove 2, let $r \in N$. Since $G_n \xrightarrow{\nu} G$, by Theorem 8 of Petrov⁷ p81-82 we know that

$$\lim_{n \to \infty} \sum_{k=1}^{k_n} F_{nk}(x) = \mathcal{M}(x) \text{ and } \lim_{n \to \infty} \sum_{k=1}^{k_n} (F_{nk}(x) - 1) = \mathcal{N}(x) \dots (2.3)$$

for all continuity points of M and N. From (2.1) and (2.3)

$$\lim_{n \to \infty} \sum_{k=1}^{k_n} (F_{nk}^{(r)}(x) - 1)$$

$$= \lim_{n \to \infty} \sum_{k=1}^{k_n} \{F_{nk}(g_1^{-1}(x^{\frac{1}{r}})) - 1 - F_{nk}(g_2^{-1}(x^{\frac{1}{r}}))\}$$

$$= \lim_{n \to \infty} \sum_{k=1}^{k_n} \{F_{nk}(g_1^{-1}(x^{\frac{1}{r}})) - 1\} - \lim_{n \to \infty} \sum_{k=1}^{k_n} \{F_{nk}(g_2^{-1}(x^{\frac{1}{r}}))\}$$

$$= N(g_1^{-1}(x^{\frac{1}{r}})) - M(g_2^{-1}(x^{\frac{1}{r}})) \text{ a.e. on } (0, \infty)$$

$$= N(g_1^{-1}(x^{\frac{1}{r}})) - M(g_2^{-1}(x^{\frac{1}{r}})) \text{ a.e. on } (0, \infty).$$

Now, we suppose that $F_n^{(r)} \xrightarrow{w} F_r$ for every $r \in N$. By (1), (2) and Theorem 8 of Petrov⁷ p81-82 we have (3) and (4).

Lemma 3 Assume that $F_n^{(r)} \xrightarrow{w} F_r$ for every $r \in N$. Then for every $r \in N$,

1.
$$M_r(x) = 0$$
 on $(-\infty, 0)$ and

2.
$$N_r(x) = N_1(x^{\frac{1}{r}})$$
 a.e. on $(0, \infty)$.

Proof We use the same argument in proving 2 of Lemma 2 by using (2.2) instead of (2.1). #

Lemma 4 Assume that

1. for every
$$r \in N, F_n^{(r)} \xrightarrow{w} F_r$$
 as $n \to \infty$ and

2. $F_r \xrightarrow{w} H$ as $r \rightarrow \infty$.

Then *H* is one of the following

- 1. a degenerate distribution function
- 2. a Poisson distribution function
- 3. a normal distribution function
- 4. the distribution function of the sum of two independent random variables one of which is normal and the other is Poisson.

Proof Let *r* be any natural number. Then, by Lemma 3

we have $M_r = 0$ on (- ∞ , 0) and $N_r(x) = N_1(x^{\frac{1}{r}})$ a.e.

on (∞ , 0). Since $F_r \xrightarrow{w} H$ as $r \rightarrow \infty$, by Theorem 3 of Petrov⁷ p75, we have

 $\lim_{x \to \infty} M_r(x) = M^*(x)$ for all continuity points x of M^* ,

 $\lim_{r \to \infty} N_r(x) = N^*(x) \text{ for all continuity points } x \text{ of } N^*,$ $\lim_{r \to \infty} \gamma_r(x) = \gamma_r^* \text{ and } x$

$$\lim_{r \to \infty} \lim_{r \to \infty} \sup_{r \to \infty} \left\{ \int_{-\varepsilon}^{0} u^2 dM_r(u) + \sigma_r^2 + \int_{0}^{\varepsilon} u^2 dN_r(u) \right\}$$

 $= \lim_{\varepsilon \to 0^+} \liminf_{r \to \infty} \left\{ \int_{-\varepsilon}^{u} u^2 dM_r(u) + \sigma_r^2 + \int_{0}^{\varepsilon} u^2 dN_r(u) \right\} = (\sigma^*)^2$

where M^* , N^* , γ^* and σ^* are associated with *H* in Le'vy's formula. This shows that

$$M^{*} = 0 \text{ and } N^{*}(x) = \lim_{r \to \infty} N_{1}(x^{\frac{1}{r}}) = \begin{cases} N_{1}(1^{+}) & \text{if } x > 1 ; \\ N_{1}(1^{-}) & \text{if } 0 < x < 1. \end{cases}$$

But

$$\overset{*}{N}(\infty) = 0$$
, so $N_1(1^+) = 0$. Thus $\overset{*}{N}(x) = \begin{cases} 0 & \text{if } x > 1 ; \\ N_1(1^-) & \text{if } 0 < x < 1 \end{cases}$

Case 1. $\sigma^* = 0$ and $N^* = 0$. Then *H* is degenerate. **Case 2.** $\sigma^* \neq 0$ and $N^* = 0$. Then *H* is normal. **Case 3.** $\sigma^* = 0$ and N^* takes one jump.

If
$$\gamma^* = -\frac{N_1(1^-)}{2}$$
 then *H* is Poisson.

If
$$\gamma^* \neq -\frac{N_1(1^-)}{2}$$
, let $m = -\frac{2\gamma^* + N_1(1^-)}{2}$, we note

that the characteristic function $\varphi_m^*(t)$ of H(x-m) is $e^{imt}\varphi^*(t)$, where φ^* is the characteristic function of H. Hence

$$\log \varphi_{m}^{*}(t) = \log e^{imt} \varphi^{*}(t)$$

= $imt + \log \varphi^{*}(t)$
= $imt + i\gamma^{*}t + 0 + 0 + \int_{-\infty}^{0^{-}} (e^{itx} - 1 - \frac{itx}{1 + x^{2}}) dN^{*}(x)$
= $i(-\frac{N_{1}(1^{-})}{2})t + 0 + 0 + \int_{-\infty}^{0^{-}} (e^{itx} - 1 - \frac{itx}{1 + x^{2}}) dN^{*}(x).$

So H(x - m) is Poisson.

Case 4. $\sigma^* \neq 0$ and N^* takes one jump. By Lemma 1, *H* is the distribution function of the sum of two independent random variables one of which is a Poisson and the other is a normal . #

Lemma 5 Assume that $F_n^{(r)} \xrightarrow{w} F_r$ as $n \to \infty$ for every $r \in N$ and $G_n \xrightarrow{w} G$ as $n \to \infty$. If $F_r \xrightarrow{w} H$ fas $r \to \infty$ then

1. $M^*(x) = 0$ on $(-\infty, 0)$, 2. $N^*(x) = \begin{cases} 0 & \text{if } x > 1 ; \\ N(g_1^{-1}(1^-)) - M(g_2^{-1}(1^-)) & \text{if } 0 < x < 1, \\ \text{on } (0, \infty) \text{ and} \end{cases}$

3.
$$M(g_2^{-1}(1^+)) = N(g_1^{-1}(1^+)) = 0$$
,

where *M* and *N* are functions in Le'vy's formula of *F* and M^* and N^* are functions in Le'vy's formula of *H*.

Proof Use the same technique in finding N^* and M^* in Lemma 4 by using Lemma 2 instead of Lemma 3.

Proof of Theorem A

Note that, for $\varepsilon > 0$ we have

$$\int_{|x| \ll} x^2 dF_{nk}^{(r)}(x) - \left(\int_{|x| \ll} x dF_{nk}^{(r)}(x)\right)^2$$

= $\int_{0}^{\epsilon} x^2 d\left[F_{nk}(g_1^{-1}(x^{\frac{1}{r}})) - F_{nk}(g_2^{-1}(x^{\frac{1}{r}}))\right]$
- $\left(\int_{0}^{\epsilon} x d\left[F_{nk}(g_1^{-1}(x^{\frac{1}{r}})) - F_{nk}(g_2^{-1}(x^{\frac{1}{r}}))\right]\right)^2$
= $\int_{0}^{\epsilon^{-1}(\epsilon^{\frac{1}{r}})} (g(t_1))^{2r} dF_{nk}(t_1) + \int_{g_2^{-1}(\epsilon^{\frac{1}{r}})}^{0} (g(t_2))^{2r} dF_{nk}(t_2^{-1})$

$$-\left(\int_{0}^{g_{1}^{-1}} \int_{0}^{(e^{\frac{1}{r}})} (g(t_{1}))^{r} dF_{nk}(t_{1}) + \int_{g_{2}^{-1}(e^{\frac{1}{r}})}^{0} (g(t_{2}))^{r} dF_{nk}(t_{2}^{-})\right)^{2}$$

$$=\int_{0}^{g_{1}^{-1}} \int_{0}^{e^{\frac{1}{r}}} (g(t))^{2r} dF_{nk}(t) + \int_{g_{2}^{-1}(e^{\frac{1}{r}})}^{0} (g(t))^{2r} dF_{nk}(t^{-})$$

$$-\left(\int_{0}^{g_{1}^{-1}} \int_{0}^{e^{\frac{1}{r}}} (g(t))^{r} dF_{nk}(t) + \int_{g_{2}^{-1}(e^{\frac{1}{r}})}^{0} (g(t))^{r} dF_{nk}(t^{-})\right)^{2}.$$

$$=\int_{0}^{g_{1}^{-1}} \int_{0}^{e^{\frac{1}{r}}} (g(t))^{r} dF_{nk}(t) + \int_{g_{2}^{-1}(e^{\frac{1}{r}})}^{0} (g(t))^{r} dF_{nk}(t^{-})\right)^{2}.$$

$$=\int_{0}^{g_{1}^{-1}} (e^{\frac{1}{r}})^{r} (g(t))^{r} dF_{nk}(t) + \int_{g_{2}^{-1}(e^{\frac{1}{r}})}^{0} (g(t))^{r} dF_{nk}(t^{-})\right)^{2}.$$

$$=\int_{0}^{g_{1}^{-1}} (e^{\frac{1}{r}})^{r} (g(t))^{r} dF_{nk}(t) + \int_{g_{2}^{-1}(e^{\frac{1}{r}})}^{0} (g(t))^{r} dF_{nk}(t^{-})\right)^{2}.$$

$$=\int_{0}^{g_{1}^{-1}} (e^{\frac{1}{r}})^{r} (g(t))^{r} dF_{nk}(t) + \int_{g_{2}^{-1}(e^{\frac{1}{r}})}^{0} (g(t))^{r} dF_{nk}(t^{-})\right)^{2}.$$

To prove necessity, we suppose that $F_n^{(r)} \xrightarrow{w} F_r$

as $n \to \infty$. Then 1. and 2. follow from Theorem 8 of Petrov⁷ p81-82 and (2.4).

For sufficiency, we define $M_r: (-\infty, 0) \to \mathbf{R}$ and $N_r: (0, \infty) \to \mathbf{R}$ by

$$M_r(x) = 0$$
 and $N_r(x) = N(g_1^{-1}(x^r)) - M(g_2^{-1}(x^r)).$

Clearly, M_r and N_r are nondecreasing and M_r (- ∞) = 0, N_r (∞) = 0. By (1) and (2) of Lemma 2 we

have
$$\lim_{n \to \infty} \sum_{k=1}^{k_n} F_{nk}^{(r)}(x) = M_r(x)$$
 and(2.5)

$$\lim_{n \to \infty} \sum_{k=1}^{n} (F_{nk}^{(r)}(x) - 1) = N_r(x) \qquad \dots (2.6)$$

for all continuity points of *M* and *N*. By assumptions 1, 2 and (2.4) we have

$$\lim_{\varepsilon \to 0^{+}} \limsup_{n \to \infty} \sum_{k=1}^{k_{n}} \left\{ \int_{|x| < \varepsilon} x^{2} dF_{nk}^{(r)}(x) - \left(\int_{|x| < \varepsilon} x dF_{nk}^{(r)}(x) \right)^{2} \right\}$$

=
$$\lim_{\varepsilon \to 0^{+}} \liminf_{n \to \infty} \sum_{k=1}^{k_{n}} \left\{ \int_{|x| < \varepsilon} x^{2} dF_{nk}^{(r)}(x) - \left(\int_{|x| < \varepsilon} x dF_{nk}^{(r)}(x) \right)^{2} \right\} = \sigma_{r}^{2} < \infty.$$

...(2.7)

By (2.5)-(2.7) and Theorem 8 of Petrov⁷ p81-82, $F_n^{(r)} \xrightarrow{w} F_r$ as $n \to \infty$. #

Proof of Theorem B For $r \ge 2$ and $0 < \varepsilon < \min \{(g_1(\delta))^r, (g_2(-\delta))^r\}$, we have $\max\{g_1^{-1}(\varepsilon^{\frac{1}{r}}), | g_2^{-1}(\varepsilon^{\frac{1}{r}}) | \} \le \delta$ and

$$0 \leq \int_{-\varepsilon}^{0} u^2 dM_r(u) + \int_{0^-}^{\varepsilon} u^2 dN_r(u)$$

$$= 0 + \int_{0^{+}}^{8} u^{2} d\left[N(g_{1}^{-1}(u^{r})) - M(g_{2}^{-1}(u^{r})) \right]$$

(by Lemma 2 (3) and (4))
$$= \int_{0^{+}}^{8^{-1}} (g_{1}(t_{1}))^{2r} dN(t_{1}) - \int_{0^{-}}^{8^{-1}} (g_{2}(t_{2}))^{2r} dM(t_{2})$$

$$[t_{1} = g_{1}^{-1}(u^{r}) \text{ and } t_{2} = g_{2}^{-1}(u^{r})]$$
$$= \int_{0^{+}}^{8^{-1}} (g_{1}(t))^{2r} dN(t) + \int_{8^{-1}(e^{r})}^{0^{-}} (g_{2}(t))^{2r} dM(t)$$

$$\leq \varepsilon \left(\int_{0^{+}}^{8^{-1}} (g_{1}(t))^{r} dN(t) \right) + \varepsilon \left(\int_{8^{-1}(e^{r})}^{0^{-}} (g_{2}(t))^{r} dM(t) \right)$$

$$\leq \varepsilon \left\{ \int_{0^{+}}^{8} (g_{1}(t))^{r} dN(t) + \int_{-8}^{0^{-}} (g_{2}(t))^{r} dM(t) \right\}$$

$$\leq \varepsilon \left\{ \int_{0^{+}}^{8} (g_{1}(t))^{2} dN(t) + \int_{-8}^{0^{-}} (g_{2}(t))^{2} dM(t) \right\}$$

$$= \varepsilon \left\{ \int_{0^{+}}^{8} (g_{1}(t))^{2} dN(t) + \int_{-8}^{0^{-}} (g_{2}(t))^{2} dM(t) \right\}$$

$$\leq c^{2} \varepsilon \left\{ \int_{0^{+}}^{8} t^{2} dN(t) + \int_{-8}^{0^{-}} t^{2} dM(t) \right\}.$$

(by property (g-3)) (2)

(by property (g-3))...(2.8)

Then $0 \leq \lim_{\epsilon \to 0^+} \limsup_{r \to \infty} \left\{ \int_{-\epsilon}^{0^-} u^2 dM_r(u) + \int_{0^+}^{\epsilon} u^2 dN_r(u) \right\}$

$$\leq \lim_{\varepsilon \to 0^+} \limsup_{r \to \infty} c^2 \varepsilon \left\{ \int_{0^+}^{\delta} t^2 dN(t) + \int_{-\delta}^{0^-} t^2 dM(t) \right\} = 0.$$

Hence

 $\lim_{\varepsilon \to 0^+} \limsup_{r \to \infty} \left\{ \int_{-\varepsilon}^{0^-} u^2 dM_r(u) + \int_{0^+}^{\varepsilon} u^2 dN_r(u) \right\} = 0....(2.9)$ Similarly, we have

 $\lim_{\epsilon \to 0^+} \liminf_{r \to \infty} \left\{ \int_{-\epsilon}^{0^-} u^2 dM_r(u) + \int_{0^+}^{\epsilon} u^2 dN_r(u) \right\} = 0....(2.10)$

To prove necessity, we suppose that $F_r \xrightarrow{w} H$ as $r \to \infty$. Since $G_n \xrightarrow{w} G$, by Theorem 8 of Petrov⁷ p81-82 we have $\lim_{n \to \infty} \sum_{k=1}^{k_n} F_{nk}(x) = M(x)$ and $\lim_{n \to \infty} \sum_{k=1}^{k_n} [F_{nk}(x) - 1] = N(x)$ for all continuity points of *M* and *N*. Then (1) and (2) follow from Lemma 5(3) and the fact that *M* and *N* are nondecreasing and $M(-\infty) = N(\infty) = 0$. Now, we will show (3).

Since $F_r \xrightarrow{w} H$, by Theorem 3 of Petrov⁷ p75 we have

$$\lim_{\varepsilon \to 0^+} \limsup_{r \to \infty} \left\{ \int_{-\varepsilon}^{0} u^2 dM_r(u) + \sigma_r^2 + \int_{0}^{\varepsilon} u^2 dN_r(u) \right\}$$
$$= \lim_{\varepsilon \to 0^+} \liminf_{r \to \infty} \left\{ \int_{-\varepsilon}^{0} u^2 dM_r(u) + \sigma_r^2 + \int_{0}^{\varepsilon} u^2 dN_r(u) \right\} = (\sigma^*)^2 \qquad \dots (2.11)$$

By (2.9) - (2.11), we see that

$$\limsup_{r \to \infty} \sigma_r^2 = (\sigma^*)^2 \text{ and } \liminf_{r \to \infty} \sigma_r^2 = (\sigma^*)^2$$

So $\lim_{r \to \infty} \sigma_r^2 = (\sigma^*)^2$.

To prove sufficiency, we assume that (1), (2) and (3) hold.

Since $G_n \xrightarrow{w} G$ and $F_n^{(r)} \xrightarrow{w} F_r$ as $n \to \infty$, by Lemma 2, $M_r = 0$ and

$$N_r(x) = N(g_1^{-1}(x^{\frac{1}{r}})) - M(g_2^{-1}(x^{\frac{1}{r}}))$$
 a.e. on $(0,\infty)$.

Let $N^* : \mathbf{R}^+ \to \mathbf{R}$ be defined by $N^*(x) = \lim_{r \to \infty} N_r(x)$ and $M^* : \mathbf{R}^- \to \mathbf{R}$ be defined by $M^*(x) = \lim M_r(x)$.

Then $M^* = 0$ on (- ∞ , 0) and by assumptions (1) and

(2)
$$N'(x) = \begin{cases} 0 & \text{if } x > 1; \\ N(g_1^{-1}(1)) - M(g_2^{-1}(1)) & \text{if } 0 < x < 1 \end{cases}$$

on (0, ∞).

That is $M^*(-\infty) = N^*(\infty) = 0$. From assumption (3) and (2.9) we have

$$\lim_{\varepsilon \to 0^+} \limsup_{r \to \infty} \left\{ \int_{-\varepsilon}^{u} u^2 dM_r(u) + \sigma_r^2 + \int_{0}^{\varepsilon} u^2 dN_r(u) \right\} = \lim_{r \to \infty} \sigma_r^2 = (\sigma^*)^2$$

Similarly, we can show that

$$\lim_{n\to 0^+} \liminf_{r\to\infty} \left\{ \int_{-\varepsilon}^0 u^2 dM_r(u) + \sigma_r^2 + \int_0^\varepsilon u^2 dN_r(u) \right\} = (\sigma^*)^2.$$

By Theorem 3 of Petrov⁷ p75, we have $\lim_{r \to \infty} F_r(x) = H(x)$, where *H* is the infinitely divisible distribution determined by *M*^{*}, *N*^{*}, γ^* and $(\sigma^*)^2$. By the same argument of Lemma 4 we have (4)-(7).

REFERENCES

- 1. Shapiro JM (1957) Sums of Powers of Independent Random Variables. *The American Mathematical Society* **29**, 515-22.
- Shapiro JM (1975) Domain of attraction reciprocals of power of random variables. Siam Journal Appl Math 29, 734-9.

- 3. Shapiro JM (1977) On domians of normal attraction to stable distributions. Houston J Math 3, 539-42.
- 4. Shapiro JM (1988) Limit distributions for sums of reciprocals of independent random variables, Houston J Math 14, 281-90.
- 5. Termwuttipong I (1986) Limit Distributions for Sums of the Reciprocal of a Positive Power of Independent Random Variables. Ph D thesis, Chulalongkorn Univ.
- 6. Neammanee K (1998) Limit Distributions for Random Sums of the Reciprocals of Logarithms of Independent Continuous Random Variables. J Sci Res Chula Univ 23, No 2.7. Petrov VV (1975) Sum of Independent Random Variables,
- Springer-Varlag, NewYork.
- 8. Lukacs E (1970) Characteristic Functions. Hafner Publishing Company, NewYork.