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INTRODUCTION

This study is the continuation of our current
efforts1,2 to develop a new synthetic route for the
preparation of fine barium titanate powder and to
examine the effect of calcination temperature on
phase transformation and particle size of the final
products.

Barium titanate is a common ferroelectric material
with a high dielectric constant, widely utilized to
manufacture electronic components such as multi-
layer capacitors (MLCs), PTC thermistors, piezo-
electric transducers and a variety of electro-optic
devices.3-7  Conventionally, barium titanate has been
synthesized by a solid-state reaction between BaCO3

and TiO2.
8-10  The overall reaction involves the initial

formation of BaTiO3 at BaCO3/TiO2 grain boundaries
which then reacts with BaCO3 resulting in the
formation of Ba2TiO4.  Finally, BaTiO3 was obtained
from the reaction between Ba2TiO4 and TiO2 under
optimum conditions.  During this reaction, precise
control of stoichiometry and powder characteristics
are difficult to maintain because of lack of consistency
in raw material sources and local inhomogeneities
arising from incomplete mixing and reaction of the
constituents.  The high calcination temperatures
needed for this reaction to occur often result in the
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formation of coarse aggregates which can be difficult
to disperse or reduce during subsequent milling.  To
overcome these deficiencies, alternative methods of
powder synthesis have been developed and described
by many authors such as co-precipitation of oxa-
lates,11-13 citrates,14-16 catecholate17-19 and others.20-25

Most of these techniques take advantage of reactions
that favour the homogeneous distribution of barium
and titanium on an almost atomic scale in solution
so that the same distribution is largely maintained
also in the precipitates.  The immediately adjacent
ions of barium and titanium can therefore react with
each other at relatively low temperatures to form
homogeneous and stoichiometric barium titanate.

It is well known that the physical properties of
ceramics are very sensitive to their microstructure.
Hence, it is essential to control the properties of the
initial barium titanate powder in order to produce
ceramics with dense, uniform and fine-grained
microstructure.26,27 Carbone and Reed28 have shown
that the particle size distribution and agglomerate
structure of the starting powders have an important
influence on the microstructure achieved in BaTiO3.
It is necessary to control the particle size distribution
and the precise composition in the powder in order
to obtain dense sintered ceramics with uniform grain
size of particle morphology.  The catecholate technique
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first proposed by Ali and Milne17 is one of the few
techniques which are able to deliver a particle size
in the range of nanometers and offer the possibilities
of close control of the homogeneity and purity of
the powders.  It has been successfully used to prepare
a range of fine powders, including perovskite
compounds.18,19 Only an organic complexing agent
(the catechol) will be utilized to form a complex
which is readily decomposed to crystalline product
by heating.  In this paper, we focus on the effect of
the calcining temperature on phase composition and
microstructural evolution of barium titanate fine
powders synthesized by the catecholate process.

MATERIALS AND METHODS

Sample preparation
The modified catecholate process17 for barium

titanate is shown in Fig 1.  Catechol, (1, 2-dihy-
droxybenzene, C6H4(OH)2) was added to dry toluene
and heated to boiling to dissolve the catechol reagent.
A solution of TiCl4 in toluene was then added
dropwise.  The dark red precipitate formed was

isolated by filtration.  The H2[Ti(C6H4O2)3]
precipitate was then gradually added to a boiling
suspension of BaCO3.  The catecholate complex,
Ba[Ti(C6H4O2)3] was obtained as an aqueous
solution which was freeze-dried and calcined for 3
hours at temperatures between 700 to 1100°C.

Sample characterization
X-ray diffractometry (XRD, D 5000, Crystal

Structure Limited (CSL)) using CuKα radiation was
used to determine the lattice parameters and phase
formation.  The (002) and (200) diffraction peaks
of the barium titanate powders were adopted to
evaluate the crystal phase.

Scanning electron microscopy (SEM, JSM-840A,
JEOL Co, Tokyo, Japan) was employed to observe
the morphology and the particle size of the powders.
A gold layer was coated onto the sample's surface
for the SEM investigation.

RESULTS AND DISCUSSION

Powder characterization
Phase Transformation
Figure 2 shows the room-temperature X-ray

diffraction patterns of BaTiO3 derived from a catechol
precursor complex after heat treatment for 3 hours
at (a) 700°C, (b) 900°C and (c) 1100°C, with the
corresponding JCPDS patterns.  The strongest reflec-
tions apparent in the majority of the XRD pattern
indicate the formation of high purity barium titanate,
BaTiO3.

Figure 3 shows the X-ray diffraction peaks of
BaTiO3 around 2θ = 45°.  Sample (a) was calcined at
a temperature of 700°C and shows only one symmetric
(200) peak, confirming its cubic symmetry.  However,
samples (b) and (c), calcined at temperatures of 900
°C and 1100°C, respectively show (002)/(200) peak
splitting of the diffraction lines around 2θ of 45°,
pointing to an additional tetragonal phase.  The
intensity ratios of the modelled peaks were compared
to the values given in the JCPDS files (file numbers
31-174 and 5-626 for cubic and tetragonal BaTiO3,
respectively).  There are two phases of BaTiO3,
ferroelectric tetragonal phase and paraelectric cubic
phase.  The lattice parameters are given as ao= 3.994
Å and co = 4.038 Å for tetragonal form and ao = 4.031
Å for cubic form.29 In our experiment, the lattice
parameters calculated from the diffraction data
indicate that the c/a ratios are 1.0065 (ao = 3.992 Å,
co= 4.018 Å at 900°C) and 1.010 (ao = 3.992 Å, co =
4.030 Å at 1100°C) for tetragonal phase, and ao =
4.01 Å for cubic phase.Fig 1. Flow chart for a modified catechol- based synthesis of

BaTiO3 powder.
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and acircular shapes (tetragonal form).  Moreover,
it was found that the relative amount of BaTiO3 in
cubic form gradually decreases with the increase in
particle size.

Particle size dependence of the tetragonal defor-
mation (defined as the ratio of the lattice constant,
(c/a-1)) between 0.5 and 1.5 µm in diameter for
BaTiO3 has been reported by Arlt et al.32 Below 0.5
µm, the existence of the pseudocubic or even the
cubic phase has been suggested in good agreement
with this work.  Because of the line broadening at
the small particle size region, it is difficult to identify
the cubic phase.  Nevertheless, a careful analysis of
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Fig 2. Room-temperature XRD patterns of the calcined powder
at various calcination temperatures with constant dwell
time and the JCPDS patterns for tetragonal and cubic
BaTiO3.

From the room temperature XRD data, it may be
concluded that low calcination temperature (700°C)
results in a cubic phase, in good agreement with
those observed by other workers.30,31  This metastable
form can be converted to the stable tetragonal form
by calcination at higher temperatures (900 and 1100
°C).

Particle size analysis
SEM micrographs of BaTiO3 powders calcined at

different temperatures are shown in Figure 4.  Sample
(a) consists of well dispersed spherical particles of
reasonably uniform sizes of 0.2 µm corresponding
to the cubic form, while sample (b) exhibits irregularly
shaped particles.  There is evidence for exaggerated
grain growth, with the development of interparticle
necks and consequent particle fusion, and also for an
increase in particle size corresponding to pseudocubic
form.  In contrast to this, sample (c) clearly shows the
presence of agglomerates and various sizes of clusters In
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Fig 3. XRD peaks for the (002) and (200) reflections of BaTiO3

powder as a function of calcination temperature
(a) 700°C, (b) 900°C and (c) 1100°C.
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equisized, spherical and well-dispersed particles was
observed at low temperature while the tetragonal
phase with various sizes of clusters and hard agglo-
merates was found at high temperature.
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