Chemical Constituents of Fissistigma polyanthoides

Vichien Jongbunprasert, Rapepol Bavovada, Pomtip Theraratchailert, Rungruedee Rungserichaib, and Kittisak Likhitwitayawida

a Department of Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
b Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.

* Address for Correspondence.

Received 26 Feb 1999

ABSTRACT From the bark of Fissistigma polyanthoides 5,8-dihydroxy-6,7-dimethoxyflavone (1), 2',5'-dihydroxy-3',4',6'-trimethoxy dihydrochalcone (2), (-)-6-hydroxy-5,7,8-trimethoxy flavanone (3) and (-)-thaipetaline (4) were isolated. The 13C NMR properties of 3 and 4 were extensively studied.

KEYWORDS: Fissistigma polyanthoides, Annonaceae, flavonoid, alkaloid, 13C NMR.

INTRODUCTION

The genus Fissistigma (Annonaceae) consists of about 80 species, widely distributed in Asia and Australia.1 Previous phytochemical investigations of the genus revealed the presence of flavonoids2-3 and isoquinoline alkaloids.4-7 Fissistigma polyanthoides (DC) Merr is a climber known in Thai as “Kha-hod” with no information on its chemical constituents so far available. As a continuation of our recent studies on Thai medicinal plants,8-12 a phytochemical study of the bark of this plant was carried out, and this resulted in the isolation of three flavonoids, namely 5,8-dihydroxy-6,7-dimethoxyflavone (1), 2',5'-dihydroxy-3',4',6'-trimethoxy dihydrochalcone (2) and (-)-6-hydroxy-5,7,8-trimethoxy flavanone (3), and one alkaloid viz (-)-thaipetaline (4).

DISCUSSION

Compounds 1 and 2 were formerly reported from F. lanuginosum, with their 1H and 13C NMR data fully examined.2 Flavonoid 3 was previously isolated from Didymocarpus pedicellata (Gesneriaceae), but it was initially misidentified as (-)-7-hydroxy-5,6,8-trimethoxy flavanone, and given a trivial name “didymocarpin.”13 In subsequent studies by Gupta and co-workers,14-16 however, a revision based on the UV, IR and 1H NMR data was suggested. This issue was further clarified in our study by examination of the HETCOR and COLOC spectra of 3. The results obtained in this work were in agreement with the conclusion of Gupta and co-workers and furthermore provided the first 13C NMR report for 3. It should be noted that a compound named isopedicin, which was previously referred to as (-)-6-hydroxy-5,7,8-trimethoxy flavanone in a review,17 was actually described in the original papers as a benzofuranone derivative.18-20 With regard to compound 4, this alkaloid was first found in Polyalthia stenopetala (Annonaceae), with its structure determined by 1H NMR analysis.21 It belongs to the rare group of 2,3,4-trisubstituted tetrahydroprotoberberines; so far only three alkaloids of this type, including 4, have been identified.21-22 The 13C NMR data of 4 were obtained for first time in this study by interpretation of the HMQC and HMBC correlations.

MATERIALS AND METHODS

Plant material: The bark of F. polyanthoides was collected from Namnao National Park, Petchaboon province in March 1993. A herbarium sample (VJ 032539) is kept at the Department of Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University.

Isolation: The dried powdered stem bark of F. polyanthoides (2 kg) was extracted with ethanol. The ethanol extract (600 g) was then chromatographed over a Kieselguhr column, eluted with hexane, CHCl3 and MeOH, respectively. The hexane fraction (18 g) was further separated by column chromatography on silica gel using hexane-acetone (4:1) as eluent to give five fractions, ie fractions A, B, C, D and E. Fraction B was recrystallized from hexane:CHCl3 to give 230 mg of 2. Fraction C was purified by a Sephadex-LH20 column, eluted with MeOH to give 1 (15 mg). Fraction D, after recrystallization from hexane:chloroform (1:1), gave 60 mg of 3. The CHCl3 extract was treated with 10%H2SO4 solution, and the aqueous layer was filtered. The filtrate was basified with NH4OH, and
then extracted with CHCl₃. The CHCl₃ fraction was
dried over anhydrous Na₂SO₄ and evaporated to
dryness to give a residue (1 g). This residue was
separated by Silica gel column chromatography,
and then purified by preparative Silica gel thin layer
chromatography to give 4 (30 mg).

Instrumentation: UV spectra were determined
on a Milton Roy spectronic 3000 Array spectrometer.
IR spectra were measured on a Perkin Elmer FT-IR
1760x spectrometer. Optical rotations were recorded
on a Perkin Elmer 341 polarimeter. EI mass spectra
were obtained on a JEOL JMS-AM20 spectrometer.
1H (500 MHz) and 13C NMR (125 MHz) experiments,
including the HETCOR, COLOC, HMQC and
HMBC techniques, were carried out on a JEOL JMN-
A 500 spectrometer.

5,8-Dihydroxy-6,7-dimethoxyflavone, 1. M.p., UV,
IR, ¹H and ¹³C NMR, and MS: see ref 2.

2',5'-Dihydroxy-3',4',6'-trimethoxy dihydro-
chalcone, 2. M.p., UV, IR, ¹H and ¹³C NMR, and MS:
see ref 2.

104 - 106°C; [α]D 25 -10.3° (c 0.3, MeOH); UV
(MeOH) λ_max (log ε) 280 (6.5), 358 (4.0) nm; IR
(KBr) ν_max 3402, 2966, 2943, 2838, 1680, 1595,
1488, 1461, 1426 cm⁻¹; EIMS m/z (% relative
intensity) 330 (23), 227 (9), 226 (100), 211 (99),
183 (27), 127 (13), 104 (10), 103 (17), 91 (4), 77
(16), 69 (31); ¹H NMR (500 MHz, CDCl₃) δ 2.87
(1H, dd, J = 16.8, 3.1 Hz, H-3a), 3.02 (1H, dd, J =
16.8, 13.1 Hz, H-3b), 3.86 (3H, s, 8-OCH₃), 3.92
and 4.10 (3H each, 5-OCH₃ and 7-OCH₃), 5.43 (1H,
dd, J = 13.1, 3.1 Hz, H-2), 5.99 (1H, s, 6-OH), 7.38
(1H, dd, J = 7.3, 1.5, 1.5 Hz, H-4'), 7.43 (2H, dd, J
= 7.3, 7.3 Hz, H-3' and H-5'), 7.48 (2H, dd, J = 7.3,
1.5 Hz, H-2' and H-6'); ¹³C NMR (125 MHz, CDCl₃):
δ 45.6 (C-3), 61.3 and 61.8 (5-OCH₃ and 7-OCH₃),
61.4 (8-OCH₃), 79.3 (C-2), 110.9 (C-10), 125.9 (C-
2' and C-6'), 128.6 (C-4'), 128.7 (C-3' and C-5'),
136.9 (C-6), 137.6 (C-8), 138.7 (C-1'), 142.3 (C-
7), 147.3 (C-5), 149.6 (C-9), 189.9 (C-4).

(-)-Thaipetaline, 4. [α]D, UV, IR, MS, ¹H NMR:
see ref 21; ¹³C NMR (125 MHz, CDCl₃): δ 23.0 (C-
5), 36.1 (C-13), 51.0 (C-6), 53.9 (C-8), 55.9 (2-
OCH₃), 59.6 (C-14), 60.7 (3-OCH₃), 61.0 (9-OCH₃),
100.6 (C-1), 114.0 (C-11), 114.7 (C-4a), 124.9 (C-
12), 127.0 (C-12a), 127.9 (C-8a), 133.6 (C-14a),
133.7 (C-3), 143.2 (C-9), 146.4 (C-4), 146.5 (C-
10), 150.5 (C-2).
REFERENCES