
An Example in Kleisli:
Codon Usage Extraction Made Easy

Jiren Wang and Limsoon Wong
BioInformatics Centre & Kent Ridge Digital Labs, 21 Heng Mui Keng Terrace, Singapore 119613
Email: {jrwang,limsoon}@krdl.org.sg

Received 1 Feb1999

ABSTRACT Codon usage information was useful to many molecular biologists in designing appropriate
degenerate oligonucleotides and in optimizing expression of genes. It could also be used in improving
the sensitivity of alignment tools in detection of short coding regions. We had two objectives in this
paper. First, we wanted to build a system that could extract coding sequences of a specified organism
from public DNA sequence databases and could compute their codon usage. Second, we wanted to
demonstrate how the general database integration system called Kleisli could help build such a system
and other sophisticated bioinformatics applications easily. We achieved these two objectives by showing
that short and clear programs could be written in Kleisli, using its high-level query language CPL, to
build such a system. The codon usage information of rice was produced as an example.

KEYWORDS: Kleisli, codon usage extraction.

ScienceAsia 25 (1999) : 23-29

INTRODUCTION

The recent explosion of genomic information, as
gleaned from the Human Genome Project and other
similar efforts, had been fueled by engineering and
technological advances. However, as the amount of
information grows the bioinformatics challenge
became one of managing and making sense of the
data. Many bioinformatics problems (1) required
access to data sources that were high in volume,
highly heterogeneous and complex, constantly
evolving, and geographically dispersed; (2) required
solutions that involved multiple carefully sequenced
steps; and (3) required information to be passed
smoothly between the steps.

As observed by Baker and Brass,1 many existing
biology data retrieval systems2,3 etc were not fully up
to the demand of flexible and painless bioinfor-
matics data integration. These systems relied on low-
level direct manipulation by biologists. The
archetypal example was the Entrez system.2 Here a
biologist used a keyword to extract summary records,
then clicked on each record to view its contents or
to perform operations. This worked well for simple
actions. However, as the number of actions or records
increased, such direct manipulation quickly became
a repetitive drudgery. Also, when the questions
became more complex and involved many
databanks, assembly of the data needed exceeded
the skill and patience of most biologists. Merely
providing a library package that interfaced to a lot
of databases and analysis softwares was also not
useful if it required long-winded and tedious

programming to make use of and/or adding to the
package, as demonstrated4, etc by the difficulties with
CORBA.5

The advanced integration technology called
Kleisli6,7went further in integrating and querying
complex data sources. In particular, Kleisli provided
the high-level query language CPL.8 CPL offered a
nice data model and many high-level operators to
express complex queries and tranformations on these
biology databases and analysis softwares in a manner
that was extremely straightforward and without
overly taxing a user’s programming skill. There was
some degree of belief that Kleisli had reduced the
difficulty of integrating biology data.9,10,1,etc

In this paper, we would like to demonstrate
Kleisli on a problem in bioinformatics that belongs
to the "Frequently Asked Questions" category: The
extraction and assembly of exons from large DNA
sequence databases and the derivation of a codon
usage table from them. Codon usage information
should help in designing appropriate degenerate
oligonucleotides and should also be useful for
experiments designed to optimize overexpression of
selected genes.12 It could also be used in improving
the sensitivity of alignment tools in detection of short
coding regions.13 There were several problems in
extracting this information from a large public
sequence database such as GenBank.

Firstly, such a database had a fairly complicated
structure.11 Secondly, feature annotations needed for
correct identification of exons were buried within
such a complicated structure. Thirdly, available
public resources such as Entrez2 did not provide a

RESEARCH ARTICLERESEARCH ARTICLE

24 ScienceAsia 25 (1999)

convenient means for extracting these buried feature
annotations.

Kleisli possessed all necessary attributes to
address this problem. After we showed how Kleisli
could be used to extract and derive codon usage of
DNA sequences from Entrez in a simple way, we also
showed how it was used to handle two related
queries. One was to generate a probable DNA
sequence given a protein sequence from an organism.
The other was the automatic assembly of the
underlying exons given a protein sequence (or its
Entrez uid) of an organism. The over 100 bioinfor-
matics functions provided by Kleisli made the
solutions to these problems trivial. In other words,
unlike other commercial systems which were
designed to solve one or two specific problems, Kleisli
was a general platform that had no inherent limitation
on the variety of bioinformatics and integration
problems it could handle, nor on sequence length, nor
on database size, nor on data structure complexity.

MATERIALS AND METHOD

Data Sources
We used the GenBank section of Entrez2 at

Washington DC as our source of genomic sequences.
In particular we used rice DNA sequences for
illustration. This data source had a fairly complicated
format. A slightly truncated example, of the rice gene
for bZIP (Entrez uid 4115745), was selected for
illustration below.

LOCUS AB021736 5651 bp DNA PLN 08-JAN-1999

DEFINITION Oryza sativa gene for bZIP protein, complete cds.

ACCESSION AB021736

NID g4115745

KEYWORDS bZIP protein.

SOURCE Oryza sativa (sub_species: indica, isolate:IR36) DNA.

 ORGANISM Oryza sativa

Eukaryota; Viridiplantae; Streptophyta; Embryophyta; ...

REFERENCE 1 (sites)

 AUTHORS Nakase,M., Matsuura,A., Okabe,S., Matsuda,T. and

Adachi,T.

 TITLE Gene structure and DNA-binding specificity of the ...

 JOURNAL Unpublished (1999)

REFERENCE 2 (bases 1 to 5651)

 AUTHORS Nakase,M.

 TITLE Direct Submission

 JOURNAL Submitted (22-DEC-1998) to the DDBJ/EMBL/GenBank

FEATURES Location/Qualifiers

 source 1..5651

/organism= "Oryza sativa"

...

 CDS join (1653..2061,3074..3167,3702..3897, 4704..4779,

4868..4993,5197..5561)

...

/translation="MERVFSVEEIS..."

BASE COUNT 1515 a 1163 c 1290 g 1683 t

ORIGIN

1 ggagggagga aagtaagccc agattcacaa aaatgtggac ...

61 aggaataaat ...

As could be seen, the "CDS" feature annotations
needed for correct identification of exons were
buried within a nested subfield of a GenBank report.
However, Entrez did not directly provide a
convenient means for extracting these buried feature
annotations. So it was necessary to employ more
sophisticated data manipulation tools.

Data Manipulation Tools
We used the high-level query language, CPL, of

the Kleisli system.6,7 The industrial-strength version
of Kleisli that we developed in Singapore had over
100 functions for manipulating over 50 bioinfor-
matics data sources. A list of some sources that Kleisli
interfaced to could be found at http://kris-inc.com/kris/

drivers.html. One of these functions was selected for
illustration below. Detail of this and other functions
could be found in.14

The na-get-seqfeat-by-uid function, when applied
to a unique identifier in Entrez such as uid 4115745
of our rice gene, would return the GenBank report
associated with that identifier. The output corres-
ponding to our example rice gene looked as given
below.

{(#uid: 4115745, #accession: "AB021736",

 #title: "Oryza sativa gene for bZIP protein, complete cds.",

 #organism: "Oryza sativa", #taxon: 4530,

 #lineage: ["Eukaryota", "Viridiplantae", "Streptophyta", ...],

#seq: "GGAGGGAGGAAAGTAAGCCCAGATTCACAAAAATGTGGAC

 ACGAGTCATT...",

#feature: {(#name: "source", #continuous: true,

#position: [(#accn: "AB021736", #start: 0, #end: 5650, #negative: false)],

#anno: [(#anno_name: "organism", #descr: "Oryza sativa"), ...])

(#name: "CDS", #continuous: true,

 #position: [(#accn: çAB021736é, #start: 1652, #end: 2060, #negative: false),

(#accn: "AB021736", #start: 3073, #end: 3166, #negative: false),

(#accn: "AB021736", #start: 3701, #end: 3896, #negative: false),

(#accn: "AB021736", #start: 4703, #end: 4778, #negative: false),

(#accn: "AB021736", #start: 4867, #end: 4992, #negative: false),

(#accn: "AB021736", #start: 5196, #end: 5560, #negative: false)],

#anno: [..., (#anno_name: "translation", #descr: "MERVFSVEEISDPFWVPPPPPQSAA...")])})}

ScienceAsia 25 (1999) 25

Note that positions of features were given in the
original GenBank report using "biologist" numbering
(which started from 1). But positions were given in
Kleisli using "computer scientist" numbering (which
started from 0). The "computer scientist" numbering
was used for two reasons: (i) it made interfacing to
the large body of existing software libraries more
convenient and less error prone, and (ii) it was trivial
to transform them back into "biologist" number
during final display time of results if desired.

The output of this function were no longer in
the "free text" form of the original GenBank reports.
Rather it had been put into a form where its
underlying structure became explicit. For example,
records would be formatted as (#l1: e1, ..., #ln: en),
sets as {e1, ..., en}, and lists as [e1, ..., en]. Data in
such a format could be arbitrarily nested. Thus any
of the ei’s above could itself be a record, set, list, or
other complex objects. Data that conformed to this
format could be directly manipulated, composed, or
taken apart by using CPL in Kleisli in a simple
manner.

An important manipulation construct of CPL was
the comprehension construct, which had the
following typical form: {e(x) | \x←R, C(x)}. It built
the set of e(x) where each x came from the collection
R and satisfied the condition C(x). Here the
collection R was assumed to be a set if the ← was
<-, or a list if the ← was <---. Also, if the {- and}-
brackets were replaced by [- and]-brackets, the result
would be a list. Another important manipulation
construct was the field projection construct, which
had the following form: e.#l. It extracted the value
at the field labelled #l in the record e. Thus, for
example, to obtain the start positions of all exons
on the positive strand of our example rice DNA
sequence, we merely needed to execute the following
CPL program:

{ p.#start

| \t <- na-get-seqfeat-by-uid (4115745),

 \f <- t.#feature, f.#name = "CDS",

 p <--- f.#position, not (p.#negative) };

Codon Usage Extraction Procedure
Our procedure to extract and assemble the exons

of rice genes, and to derive the underlying codon
usage, consisted of four steps. The first step was to
obtain Entrez records of rice DNA sequences whose
coding regions were explicitly annotated. In other
words, there had to be some "CDS" feature anno-
tations in their GenBank reports. The Entrez
specification to download rice DNA sequences

having coding regions that were explicitly annotated
was "rice[Organism] AND cds[Feature key]." The
CPL function na-get-seqfeat-general would remotely
query Entrez for GenBank reports satisfying a given
specification. Thus to find out which rice sequences
had annotated coding regions, we just applied
na-get-seqfeat-general to the specification "rice
[Organism] AND cds[Feature key]" and wrote the
records obtained to a file seqfeats. A database-style
index accn2seq was also created on the #accession field
of the file seqfeats, so that we had fast access to a
sequence given its accession number. This step was
done using the CPL program below.

writefile na-get-seqfeat-general "rice[Organism]+AND+

cds[Feature+key]" to "seqfeats" using stdout;

readfile seqfeats from "seqfeats" using stdin;

writefile "seqfeats" to "#accession" using setindex-create;

setindex-access (#name: "accn2seq", #file: "seqfeats", #key:

"#accession");

Next, we needed functions to implement the
extraction of an exon given its position information.
There were two functions, get-+ve-strand for extracting
from the positive strand and get--ve-strand for
extracting from the negative strand. One of them
was implemented as shown below.

primitive get-+ve-strand == p =>

{ string-span (S.#seq, p.#start, p.#end)

| S <- process <#key: p.#accn> using accn2seq };

The input to get-+ve-strand is a position record p,
specifying how an exon was derived. The #accn field
of p gave the accession number of the sequence of
this exon. We fetched the sequence s from our index
accn2seq. Then we used the #start and #end fields of
verb p to extract from verb+s+ the specific sequence
segment constituting the exon. The get--ve-strand

function was similar, except we needed to take care
of reverse-complementation.

We could now proceed to the third step, which
was to assemble our gene sequences. For each record
x in seqfeats, we iterated through each feature f in x’s
feature table to look for a feature that corresponded
to coding regions; these were those feature whose
name was CDS. We had to make sure that the feature
was complete, hence the test f.#continuous. To ensure
that the coding region was proper, we check to see if
its annotations a contained a protein translation and
if that translation begun with methionine (M). If all
these tests passed, then we knew that f.#position was a
list of position records identifying all exons of the

26 ScienceAsia 25 (1999)

gene identified by x. We set p to iterate over these
position records. Then depending on whether the
exon was on the positive or negative strand, we
invoked get-+ve-strand or get--ve-strand to get the
corresponding sequence z of the exon. These z’s were
then "imploded" or concatenated to recover the
sequence of the gene. The sequences of genes, their
unique identifiers, and their translations were all
written to the file genes for subsequent processing.

writefile

{ (#uid: x.#uid, #translation: a.#descr, #gene: string-implode (g))

|\x <- seqfeats,

 \f <- x.#feature, f.#continuous, f.#name = "CDS",

 \a <--- f.#anno, a.#anno_name = "translation", a.#descr

string-islike "M%",

 \g == [z |\p <--- f.#position.list-head,

 \z <- if p.#negative then get--ve-strand (p) else

get-+ve-strand (p)] }

to "genes" using stdout;

readfile genes from "genes" using stdin;

Theoretically, we could produce the codon usage
table by applying the codon-usage function of Kleisli
to sequences in genes like this:

process [x.#gene | x <--- genes] using codon-usage;

Duplicate Elimination
Since some genes might be sequenced many

times from different strains or by dif ferent
laboratories, the sequences of these genes in
GenBank might repeat several times. Thus a codon-
usage table as produced above might not be accurate.
Consequently, it would be desirable if duplicates that
were identical up to small differences were also
eliminated before the codon-usage table was
produced.

Given the information available in file genes, we
actually had two alternate levels at which duplicate
elimination could be conducted: the coding DNA
or the translated protein. The latter alternative was
possible because in our case the translated proteins
extracted from Entrez were in the correct translation
frames and were in one-to-one correspondence to
the coding DNAs. As the protein sequences were
three times shorter than the coding DNA sequences
and came from a larger alphabet, performing
duplicate elimination on them would be many times
more efficient than on the coding DNAs. So we chose
this more favourable alternative and used the general
S-Hash sequence indexing technology15 in Kleisli to
accomplish the task.

First, a S-Hash sequence index genes-index was
created on protein translations in genes. This genes-

index allowed us to efficiently compare any sequence
g against all sequences in genes and to extract those
that were similar to g.

writefile {(#uid: x.#uid, #seq: x.#translation) | x <--- genes } to

"genes-index" using seqindex-out;

seqindex-scanseq (#name: "genes-index", #index: "genes-index",

#level: 1);

Next, we defined a function get-similar-genes that
returned all sequences in genes that were similar
(modulo 10% mismatches) to an input sequence g.
Then a sequence g was a "representative" of a group
of sequences in genes that were similar to it if its
Entrez uid was smallest amongst those of the group.
This idea was captured by these definitions:

primitive get-similar-genes == g => let d == 0.1 * string-length

(g.#translation) in process <#doit:(#restrict:false, #pattern:

g.#translation, #edit:d, #overlap:30, #favourshort:true)> using

genes-index;

primitive representative == g => { } = { x | x <- get-similar-genes

(g), x.#uid < g.#uid };

At last, we could produce a codon usage table
with good accuracy by considering only members
of genes that were representatives of their groups–
duplicates that had over 90% identity in their translated
proteins had been eliminated from consideration.

primitive codon-usage-table == process [x.#gene | x <— genes,

representative (x)] using codon-usage;

Web Interfaces
A convenient web interface to the automatic

codon usage extraction procedure described above
had been put up at http://adenine.krdl.org.sg:8080/demos/

biokleisli/codon-usage. This interface required only one
input: the name of an organism whose codon usage
table was desired. This interface also supported an
additional parameter that specified a threshold on
sequence identities for the elimination of highly
similar sequences.

A convenient web interface to perform back
translation of protein sequence into DNA sequence
had also been put up at http://adenine.krdl.org.sg:8080/

demos/biokleisli/backtrans. The user merely needed to
supply his protein sequence and to select a codon
usage table we had previously extracted. The DNA
sequence corresponding to a probable back
translation would be returned.

ScienceAsia 25 (1999) 27

RESULTS AND DISCUSSION

 We produced codon usage tables for many
organisms, including: Arabidopsis, barley, beans,
brassica, conifers, corn, glycine, lepidoptera, pisum,
rice, sorghum, wheat, monocot and dicot RNA
viruses, monocot and dicot DNA viruses, etc. The
codon usage tables of an organism X could be
accessed at http://adenine.krdl.org.sg:8080/ limsoon/kozak/

X/all. Thus, beans' codon usage table could be accessed
at http://adenine.krdl.org.sg:8080/limsoon/kozak/beans/all.
The codon usage table produced for rice was selected
for illustration below.

Applying the extraction procedure as described
in the previous section, we retrieved 845 rice
nucleotide records from Entrez containing explicitly
annotated CDS features. From these 845 rice genes,
the codon usage table below was produced. The
entire process from the downloading of GenBank
reports to the displaying of the table took less than
10 minutes. This codon usage table produced by the
codon-usage function of Kleisli was in a different form
than that of.16 The codon usage tables of16 gave the
overall frequency of a triplet amongst all possible
triplets. Ours gave the relative frequency of a triplet
amongst all triplets that coded for the same amino
acid. Note that Kleisli also had a function codon-

usage3 that could produce codon tables in a form
like those of.16 What was remarkable was that we
could produce these tables from scratch using a mere
25 lines of CPL programming.

COMMENTS ON KLEISLI

To better appreciate the power of the Kleisli
system in solving bioinformatics integration
problems, some additional queries and comparisons
were made.

Some Related Queries.
The CPL programs developed so far could be

used to handle some related bioinformatics
questions. We chose two for illustration below. The
simplicity of their implementation was remarkable.

Assume that a rice protein P was given. We would
like to know a probable underlying coding DNA
sequence. One reasonable method to generate a
probable underlying coding DNA sequence for P was
to make use of the rice codon usage table codon-usage-

table produced earlier. For every amino acid in P, a
corresponding DNA triplet was randomly selected
according to the probabilities described in the codon
usage table. The function codon-gen2 provided in
Kleisli could be used for this purpose, as shown
below.

process (#code: codon-usage-table, #seq: P) using codon-gen2;

Assume that an Entrez uid U to a rice protein was
given. We would like to know its actual underlying
coding DNA sequence if this information was
available. A reasonable method to obtain this
information was to access the Entrez web page for
protein query to bring up the GenPept report for U.
Then clicked on its DNA link button to view the

aa codon % codon % codon % codon % codon % codon %

A GCA 17.52 GCC 33.53 GCG 24.72 GCT 24.23
C TGC 70.04 TGT 29.96
D GAC 56.74 GAT 43.26
E GAA 33.99 GAG 66.01
F TTC 63.15 TTT 36.85
G GGA 20.40 GGC 37.93 GGG 19.95 GGT 21.72
H CAC 56.87 CAT 43.13
I ATA 18.50 ATC 48.53 ATT 32.96
K AAA 29.33 AAG 70.67
L CTA 7.25 CTC 28.39 CTG 22.36 CTT 17.87 TTA 10.10 TTG 14.03
M ATG 100.00
N AAC 61.90 AAT 38.01
P CCA 23.23 CCC 24.78 CCG 27.71 CCT 24.28
Q CAA 37.94 CAG 62.06
R AGA 16.27 AGG 24.05 CGA 8.46 CGC 23.75 CGG 14.40 CGT 13.07
S AGC 21.50 AGT 11.48 TCA 13.99 TCC 23.09 TCG 13.76 TCT 16.18
T ACA 20.55 ACC 36.34 ACG 19.31 ACT 23.80
V GTA 11.21 GTC 30.96 GTG 33.55 GTT 24.28
W TGG 100.00
Y TAC 62.37 TAT 37.63
* TAA 33.64 TAG 27.44 TGA 38.92

28 ScienceAsia 25 (1999)

GenBank report of the DNA sequence from which
this protein was derived. If the DNA sequence was a
genomic DNA sequence, then we would have to
assemble the exons ourselves using the "CDS"
feature annotation of this GenBank report. This
process could be automated using Kleisli. Kleisli had
a function aa-get-na-uid, that given an Entrez uid of a
protein, returned the uid of the GenBank report of
its underlying DNA sequence. Thus we could modify
our earlier exon assembly program to answer this
query as follows:

{ string-implode (g)

 | \u <- aa-get-na-uid (U),

 \s <- aa-get-seq-by-uid (U),

 \x <- na-get-seqfeat-by-uid (u),

 \f <- x.#feature, f.#continuous, f.#name = "CDS",

 \a <--- f.#anno, n.#anno_name = "translation", a.#descr =

s.#sequence,

 \g == [z | \p <— f.#position.list-head,

 \z <- if p.#negative then get—ve-strand (p) else

get-+ve-strand (p)] };

Comparison With Other Query Systems
Several other approaches had been available to

explore information in heterogeneous biological
databases and to address the problems of multiple
database query and data integration. We singled out
several representative approaches for comparison.

One of the more successful approaches for
integrating biological databases was by connecting
heterogeneous databases via hypertext links on the
Web and providing comprehensive indexing systems
for query. Such link-based approach was adopted by
SRS3 and LinkDB.17 These systems were convenient
to use for simple operations. However, they had no
facilities for flexible transformation of data from
heterogeneous sources. As a consequence, they
required a significant amount of manual work for
data integration.

The TAMBIS project18 aimed at providing
transparent access to multiple databases and analysis
tools using a graphic user interface. It employed a
knowledge-driven user interface for query
formulation. The knowledge-driven graphic user
interface was implemented on top of an old version
of our Kleisli system for the actual execution of
database query and data exchange.

The TAMBIS query system was user friendly and
gave a simple way for non-programmers to specify
queries. However, the kind of queries that could be
expressed were rather restricted by the designs of
the TAMBIS query templates.

The OPM*QS19 used the common data model
approach to accomplish the task of multiple database
query and data integration. The OPM*QS provided
graphic interfaces, an SQL-like structured query
language, an object data model, and sophisticated
OPM data management tools. However, OPM*QS
lacked a simple data exchange format and relied on
a dictionary of schema mapping to map individual
database schema into the common OPM global
schema. As a result, OPM*QS required a lot more
effort and planning to add new sources than Kleisli.

In contrast, Kleisli was indifferent to database
schema and did not require a common global
schema. Kleisli was designed around a nested
relational data model that allowed arbitrary nesting
of types such as sets, bags, lists, records, and variants.
Kleisli provided a self-describing data exchange
format to convert various data types into the Kleisli
data model. The Kleisli nested relational data model
was a generalization of the conventional relational
data model, as well as other data models embedded
in flat files and analysis software frequently used in
bioinformatics. Therefore, conventional relational
data and other biological data could be readily
converted into the Kleisli internal data model.
Furthermore, Kleisli was equipped with an advanced
"type inference system" that could deduce the
structure of input and output data directly from the
structure of a query. The powerful data model, the
self-describing data exchange format, and the
advanced type inference system made the use of a
global schema unnecessary in Kleisli. Kleisli could
readily handle the "on demand" query of databases.
In addition, the high-level CPL query language,
which provided rich expressions for pattern
matching, string manipulation, and other facilities,
greatly eases the tasks of data manipulation and
integration. The Kleisli system did require users to
understand the CPL query language. To simplify
usage, we experimented with a graphic user interface
and a bioinformatics query wizard for routine queries.20

A more robust graphic interface is now under way.

AVAILABILITY

Kleisli runs on SUN Solaris platform, preferrably
with 64 MB memory or more. It is available from
KrisTech Inc. in California under the name KRIS.
KRIS stands for both "Kleisli-Related Integration
System" and "Kent Ridge Integration System" to
distinguish this industrial-strength version from the
early prototype developed by one of us (Wong)
several years ago at the University of Pennsylvania.

ScienceAsia 25 (1999) 29

REFERENCES

1. Baker PG and Brass A (1998) Recent development in biological
sequence databases. Current Opinion in Biotechnology, 9, 54-8.

2. Schuler GD, et al (1996) Entrez: Molecular biology database
and retrieval system. Methods in Enzymology, 266 , 141-62.

3. Etzold T and Argos P (1996) SRS: Information retrieval system
for molecular biology data banks. Methods Enzymol, 266, 114-
28.

4. Selletin J and Mitschang B (1998) Data-intensive intra- &
internet applications-Experiences using Java and CORBA in
the World Wide Web. Proceedings of 14th IEEE International
Conference on Data Engineering, 302-11.

5. Siegel J (1997) CORBA: Fundamentals and Programming. Wiley,
New York.

6. Davidson SB, et al (1996) BioKleisli: A digital library for
biomedical researchers. International Journal of Digital Libraries,
1, 36-53.

7. Buneman P, et al (1995) A data transformation system for
biological data sources. Proceedings of 21st International
Conference on Very Large Data Bases, 158-69.

8. Buneman P, et al (1994) Comprehension syntax. SIGMOD
Record, 23, 87-96.

9. Benton D (1996) Bioinformatics -principles and potential of a
new multidisciplinary tool. Trends in Biotechnology, 14, 261-72.

10.Karp PD (1996) Database links are a foundation for
interoperability. Trends in Biotechnology, 14, 273-79.

11.Burks C, et al (1992) GenBank. Nucleic Acids Research, 20
Supplement, 2065-69.

12.Gasch A, et al (1992) Gene isolation with the polymerase chain
reaction. Methods in Arabidopsis Research, 342-56.

13.States DJ and Gish W (1994) Combined use of sequence
similarity and codon bias for coding region identification.
Journal of Computational Biology, 1, 39-50.

14.Wong L (1998) The Collection Programming Language
Reference Manual. Kent Ridge Digital Labs, 21 Heng Mui Keng
Terrace, Singapore 119613.

15.Pang HH, et al (1999) S-Hash: An indexing scheme for appro-
ximate subsequence matching in large sequence databases.IEEE
Transactions on Knowledge and Data Engineering, to appear.

16.Nakamura Y, et al (1999) Codon usage tabulated from the
international DNA databases; its status 1999. Nucleic Acids
Research, 27, 292.

17.Fujibuchi W, et al (1998) DBGET/LinkDB: An integrated
database retrieval system. Proceedings of Pacific Symposium
on Biocomputing'98, 683-94.

18.Baker PG, et al (1998) TAMBIS–transparent access to multiple
bioinformatics information sources. Proceedings of 6th
International Conference on Intelligent Systems for Molecular
Biology, 25-34.

19.Chen IMA and Markowitz VM (1995) An overview of the
object-protocol model (OPM) and OPM data management
tools. Information Systems, 20, 393-418.

20.Tan WC, et al (1998) A graphical interface to genome
multidatabases. Journal of Database Management}, 9, 24-32.

