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Summary

The transmission coefficients for forward and backward tunneling in a normal
metal-insulator-superconductor (NIS) junction are obtained via the Bogoliubov-de Gennes
equations. The fact that the two transmission coefficients are different casts doubt on the
validity of the “golden rule” used in the transfer hamiltonian approach to tunneling in NIS
Junctions. '

The transfer-hamiltonian formalism for the study of tunneling between a
normal metal electrode and a superconducting electrode across an insulating barrier was
first suggested by Bardeenl. In this approach to tunneling, the transfer hamiltonian

H = z
T VRk,Lk. aRk + aLk. 4 h_c. (1)

k,k'

(where R and L refer to the electronic or quasiparticle states of the right hand side and the
left hand side electrodes, respectively) is treated as a perturbation. To obtain the tunneling
rate, one makes the crucial assumption that the transition rate for an electron in an initial
(Block) state k' of the normal electrode tunneling into a final quasiparticle state k of the
superconducting electrode is given by the “‘golden rule”2 ‘
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£i = x leil §(e - E) (2)
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where M3 is the matrix element < f|Hyp| i >. With the transfer hamiltonian in the above
form (equation 1), the transition rate for the reverse tunneling is also given by;the above
golden rule. It then follows that the net transition rate3 is given .by

_ 27 ® 2
Po= 5 L v ifL(w) S L (W (W) P (W) dw (3)

where R(L) refers here to the right (left) hand side electrode; f(®) is the Fermi-Dirac func-
tion; and p(®) is the density of states.

The purpose of this paper is to show that the above golden rule is not
valid for tunneling between a normal metal electrode and a superconducting electrode by
using an alternative method, the Bogoliubov-de Gennes equation approach,4:3 to obtain
the net tunneling current. Recent investigations of the tunneling problem using a third
technique, the Green’s function method,2,6 indicate that there are some shortcomings in the
transfer hamiltonian approach. The transition rate obtained by the Green’s function
formalism contains an additional term called the “resonant term” since it contains an
explicit dependence on the impurity spectral density in the barrier. This term exhibits a
left-right asymmetry which is not present in the transfer hamiltonian transition rate. These
studies do not, however, address themselves to the question of whether the golden rule is
valid or not for tunneling between a normal metal electrode and a superconducting elec-

trode.

Reason for doubting the validity of the golden rule is that in viewing the tunnel-
ing currents in the Bogoliubov-de Gennes equation approach, one sees an asymmetry in
the current flows arising in the tunneling of the electrons from the normal metal side and
in the tunneling of quasiparticles from the superconducting side. For tunneling from the
normal metal side, we have an incident electron of momentum k, (k + = (kg2-ku2+
2mE/h2)"?) propagating towards the right, a reflected electron of momentum k, and
a hole of momentum -k_propagating towards the left, i.e.,

11»N = {(O> [U+ e+ 4+ U_ e + +x] + (1> v_ elk—x} elk{lrll (4)

where ki and ri, are the components of the wave and position vectors parallel to the metal-
insulator interface; and a transmitted electron-hole (BCS) pair propagating to the right in
the superconducting region, i.e.,

+ -
1 + ik x 1l - =ik x ik r
(B) U+ e + \g) e e 1% (5)
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where B = A(E £ Q)
a = @ -2H"
+ 2 2 2. %
k = (kF-kutzmQ/—ﬁ)

For the case of tunneling from the superconducting si‘de, we have in the superconductor an
incident electron of momentum k* propagating towards the left and an electron-hole
(BCS) pair propagating towards the right, i.e.,

+ + -
+ 1 -ik x + 1 ik x - 1 -ik x ik)|r
| _ . - e
g { U (B) e + U, (B> e +U_ (B)e }e ! (6)

(where the last two wave functions represent the electron-hole pair) and in the normal metal,
we have an electron of momentum k. propagating towards the left and a hole of momen-
tum-k__ propagating towards the right, i.e.,

b = { u, ((1)) e 4 v(‘;) xS Tl (7)

The transmission coeflicient for both forward (from the normal side) and
backward (from the superconducting side) tunneling is defined as W=J (rapsmitted/
Jincident. For forward tunneling, the transmission coefficient WNis equals [ (1+B2)
(JU$[2-B~2|UZ[2) )/(]U |2+ |V_|2 where the U’s and V are the coefficients appearing in
equations (4) and (5). For backward tunneling, the definition of the transmission coefficient
leads to WsIN= (JU,[2-[V_|[2)/[(1 B?) (|U+[2+B~2|UZ|2)+4 Re UZ* U+] where the U’s
and V here are the coefficients appearing in equations (6) and (7). The coefficients appea-
ring in equations (4)~(7) are determined by matching the wave functions (and their
derivatives) for the normal metal or for the superconductor with the electronic wave
functions in the insulator at the interfaces.

Since we are only interested in determining whether the golden rule is valid or
not, we will consider in this study the simple but unphysical model of replacing the insulator
by a rectangular potential barrier of height V,. For such a model, the wave functions
inside the insulator are

= U KX U - i
v = e"* 4+f U- A S (]

(8)

+ H +H

\Y

where k =(ku2+2mVy/h2)i. Applying the boundary conditions at the interfaces, we
obtain for both cases, eight equations with nine unknowns. Griffin and Demers4 have

rF Y



224 J. Sei. Soc. Thailand, 1 (1973)

cnm(t) = 6nm * S * Com +oiienn + cnm(k) (14)

where cnm(D) is the coefficient determined in the first order perturbation theory; cym(®,
in the second order perturbation theory;and where c,,m®), in the k-th order perturbation
theory. With the transfer hamiltonian (1) as the perturbation, the coefficients cpm(t) and
cmn(t) can be written as

_ + \ 2 .3 k
cnm(t) = z a amk'{vnk,mk + terms of order V-,V ,..., V } (15)
k,k'
and
_ + +
Con B = I oa. ank{vmk' nx *+ terms of order V+2,....,V+2} (16)
k,k'

The bracketed terms appearing in the two coefficients are not necessarily the complex
conjugate of each other. Since the transfer hamiltonian (1) exhibits time reversal symmetry,
we have by the principle of detailed balancing?

pnm = P (17)

i.e., the rate of transition for the state n to go into a state m is the same as the rate of transi-
tion for the state m to go into a state n. It then follows from the definition of the transmon
rate that -

le (t)‘2 lc (t)|2 (18)
nm mn

This means that the modulus square of the bracketed term of eq. (15) is equal to the modulus
square of the bracketed term of eq. (16) if the potential V does not depend strongly on k
and k' (this property of Vnk mk' is usually assumed). As a consequence, the net current
obtained in the higher order perturbation treatment of the transfer hamiltonian will be in
the form given by (3) except that the ]V(co)]2 factor is replaced by the modulus square of
the bracketed term of eq. (15). Since the transfer hamiltonian approach is a phenomen-
ological model with the potential V to be determined, we can replace the potential
appearing in eq. (1) with the modulus of the bracketed term of eq. (15). In this way, the
net current obtained by the use of the golden rule will be the ‘exact’ net current.

The clue as to why the net current obtained by the Bogoliubov-de Gennes
approach is different from that obtained by the transfer hamiltonian approach is provided
by the fact that the principle of detailed balancing is based on time reversal symmetry.
For NIS tunneling, there is no time reversal symmetry since the physical picture when the
electrons are incident from the normal metal side is not the time reversal of the picture
when the electrons are incident from the superconducting side. The transfer hamiltonian
for NIS tunneling should be in the form
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- (1) t (2) +
B, z {ka,Lk, ank e t va,,Rk Ak @y (19)
k,k'

where (Vrk, Lk(D 1 # Vik, re®. With this hamiltonian as the perturbation, the
perturbative calculation of the net current would be in the form of the current obtained by
the Bogoliubov-de Gennes approach. It is interesting to note that for superconductor-
insulator-superconductor (SIS) tunneling® where time reversal symmetry has been restored,
the net current obtained by the Bogoliubov-de Gennes approach is in the form given by (3).
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Summary

This paper reports the temperature dependence of the condensate fraction in
4He 11 determined from Cummings’ proposal which involves only measurement of the liquid
structure factor. ‘

Introduction

1t is widely believed that the ratio of the (bulk) condensate to the total density
(p¢/p) is in the range of 0.08 to 0.25 at T=O'K for 4He 11, based on theoretical estimatesl ™4,
An experimental confirmation of this theoretical estimates is feasible. One of us5 has
presented a method for determining the condensate density fraction for all temperatures
based only on the knowledge of the equilibrium pair distribution function g(r, T) asa
function of temperature just above Ty, and below. ’

Theoretical Considerations

We will briefly review first the method which has been proposed by Cummings’
and then extend it. From the conditions® required of the second order reduced density
matrix Q, and the form6 for Q,, we can write it as

2, = p'glz,m

2 2 1
£ mod + 2L mp ey + 28,00, 4, )| + Ay )

which is valid when r>r; ~ 4.5 A the point where the first order reduced density matrix2
Q, (r) becomes equal to the condensate density p (see fig. 1), and where g assume the value 1
for the second time. The function A, must satisfy all conditions analogous to the conditions
required of Q,. Thus A, (0)=0, and A;(r)=p2 when r>r,, where r, is several times
larger than r;. Therefore |A z(r)l may be defined as

4, = oF G, 2



